如圖,在四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,
點P在四邊形ABCD的邊上.若點P到BD的距離為,則點P的個數(shù)為【   】
A.1B.2C.3D.4
B
首先作出AB、AD邊上的點P(點A)到BD的垂線段AE,即點P到BD的最長距離,作出BC、CD的點P(點C)到BD的垂線段CF,即點P到BD的最長距離,由已知計算出AE、CF的長與比較得出答案.

解:過點A作AE⊥BD于E,過點C作CF⊥BD于F,
∵∠BAD=∠ADC=90°,AB=AD=2,CD=
∴∠ABD=∠ADB=45°,
∴∠CDF=90°-∠ADB=45°,
∵sin∠ABD=
∴AE=AB?sin∠ABD=2?sin45°=2?=2>,
所以在AB和AD邊上有符合P到BD的距離為的點2個,
∵sin∠CDF=,
∴CF=CD?sin∠CDF=?=1<,
所以在邊BC和CD上沒有到BD的距離為的點,
所以P到BD的距離為的點有2個,
故選:B.
此題考查的知識點是解直角三角形和點到直線的距離,解題的關鍵是先求出各邊上點到BD的最大距離比較得出答案.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

(2011•廣州)已知?ABCD的周長為32,AB=4,則BC=( 。
A.4B.12
C.24D.28

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011?德州)如圖,D,E,F(xiàn)分別為△ABC三邊的中點,則圖中平行四邊形的個數(shù)為 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(11·臺州)在梯形ABCD中,AD∥BC,∠ABC=90º,對角線AC、BD相交于
點O.下列條件中,不能判斷對角線互相垂直的是【   】
A.∠1=∠2          B.∠1=∠3
C.∠2=∠3          D.OB2+OC2=BC2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011•桂林)如圖,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周長為26,DE=4,則△BEC的周長為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,梯形ABCD中,AD∥BC,AB=CD,AC⊥BD于點O,∠BAC=60°,若BC=,則此梯形的面積為
A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一等腰梯形兩組對邊中點連線段的平方和為8,則這個等腰梯形的對角長為_  ▲  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖11,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD折疊,點C落在點C′的位置,BC′交AD于點G.
(1)求證:AG=C′G;
(2)如圖12,再折疊一次,使點D與點A重合,的折痕EN,EN角AD于M,求EM的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,四邊形ABCD是正方形,E是BC延長線上一點,且CE=BD,則∠DAE的度數(shù)為____.

查看答案和解析>>

同步練習冊答案