【題目】如圖,在中,,點在上,且,的平分線交于點,點是的中點,連結(jié).若四邊形DCFE和△BDE的面積都為3,則△ABC的面積為____.
【答案】10
【解析】
首先利用等腰三角形的性質(zhì)得到點E是AD的中點,可得EF是△ACD的中位線,則EF∥CD,EF=CD,進(jìn)而可證明△AEF∽△ADC,然后利用相似三角形面積的比等于相似比的平方求得△ADC的面積,由點E是AD的中點得△BDE和△BAE面積相等,利用 即可求解.
解:∵BE平分∠ABC,BD=BA,
∴BE是△ABD的中線,
∴點E是AD的中點,
又∵F是AC的中點,
∴EF是△ADC的中位線,
∴EF∥CD,EF=CD,
∴△AEF∽△ADC,
∴S△AEF:S△ADC=1:4,
∴S△AEF:S四邊形DCFE=1:3,
∵四邊形DCFE的面積為3,
∴S△AEF=1,
∴S△ADC =S△AEF+ S四邊形DCFE =1+3=4,
∵點E是AD的中點,△BDE的面積為3,
∴ =3,
∴=3+3+4=10.
故答案為:10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+x+b與x軸交于A、B兩點,與y軸交于點C.
(1)若B點坐標(biāo)為(2,0)
①求實數(shù)b的值;
②如圖1,點E是拋物線在第一象限內(nèi)的圖象上的點,求△CBE面積的最大值及此時點E的坐標(biāo).
(2)如圖2,拋物線的對稱軸交x軸于點D,若拋物線上存在點P,使得P、B、C、D四點能構(gòu)成平行四邊形,求實數(shù)b的值.(提示:若點M,N的坐標(biāo)為M(x,y),N(x,y),則線段MN的中點坐標(biāo)為(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過點,直線與y軸交于點B,與圖象G交于點C.
(1)求m的值.
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記圖象G在點A,C之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)直線l過點時,直接寫出區(qū)域W內(nèi)的整點個數(shù).
②若區(qū)域W內(nèi)的整點不少于4個,結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,G是⊙O上兩點,且,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線;
(2)若,求證:AE=AO;
(3)連接 AD,在(2)的條件下,若CD ,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在平面直角坐標(biāo)系中,直線AB:交x軸于點A(-4,0),交y軸于點B,點C(2,0).
(1)如圖1,求直線AB的解析式;
(2)如圖2,點D為第二象限內(nèi)一點,且AD=DC,DC交直線AB于點E,設(shè)DE:EC=m,點D的縱坐標(biāo)為d,求d與m的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(3)如圖3,在(2)的條件下,直線AD交y軸于點F,點P為線段AF上一點,G為y軸負(fù)半軸上一點,PG=AB,且∠PGF+∠BAF=∠AFB,當(dāng)m=1時,求點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青山區(qū)政府美化城市環(huán)境,計劃對面積為平方米的區(qū)域進(jìn)行綠化,安排甲、乙兩個工程隊完成,已知乙隊每天能完成綠化的面積是甲隊每天能完成綠化面積的倍,并且在獨(dú)立完成面積為平方米區(qū)域的綠化時,甲隊比乙隊多用天.
求甲、乙兩工程隊每天能完成綠化的面積分別是多少平方米?
若區(qū)政府每天需付給甲隊的綠化費(fèi)用為萬元,乙隊為萬元,要使這次的綠化總費(fèi)用不超過萬元,至少應(yīng)安排甲隊工作多少天?
為合理利用綠化用地,這是需要用長為米的植物隔離帶靠著墻(墻的最大可用長度為是米,植物隔離帶的自身寬度不計),如圖所示,圍成中間隔有植物隔離帶的長方形中央綠地,設(shè)綠地的寬為米,面積為米.試問中央綠地的面積能達(dá)到嗎?如果能,請求出此時的長;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市促銷活動,將A,B,C三種水果采用甲、乙、丙三種方式搭配裝進(jìn)禮盒進(jìn)行銷售.每盒的總成本為盒中A,B,C三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝A,B,C三種水果6kg,3kg,1kg;乙種方式每盒分別裝A,B,C三種水果2kg,6kg,2kg.甲每盒的總成本是每千克A水果成本的12.5倍,每盒甲的銷售利潤率為20%;每盒甲比每盒乙的售價低25%;每盒丙在成本上提高40%標(biāo)價后打八折出售,獲利為每千克A水果成本的1.2倍.當(dāng)銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為2:2:5時,則銷售總利潤率為_____.(利潤率=利潤÷成本×100%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y=(k≠0)的圖象交于A、B點,與y軸交于點C,其中點A的半標(biāo)為(﹣2,3)
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)如圖,若將點C沿y軸向上平移4個單位長度至點F,連接AF、BF,求△ABF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點A、B,與y軸交于點C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點R為第一象限的拋物線上一點,分別連接RB、RC,設(shè)△RBC的面積為s,點R的橫坐標(biāo)為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點D在x軸的負(fù)半軸上,點F在y軸的正半軸上,點E為OB上一點,點P為第一象限內(nèi)一點,連接PD、EF,PD交OC于點G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過點R作RT⊥OB于點T,交PC于點S,若點P在BT的垂直平分線上,OB﹣TS=,求點R的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com