已知,如圖,在正方形ABCD中,E、F分別是邊BC、CD上的點(diǎn),且BE=CF.
求證:AE⊥BF.

證明:在正方形ABCD中,AB=BC,∠ABC=∠C=90°,
在△ABE和△BCF中,,
∴△ABE≌△BCF(SAS),
∴∠BAE=∠CBF,
又∵∠ABF+∠CBF=∠ABC=90°,
∴∠BAE+∠ABF=90°,
設(shè)AE、BF相交于點(diǎn)G,
則∠AGB=180°-(∠BAE+∠ABF)=180°-90°=90°,
∴AE⊥BF.
分析:根據(jù)正方形的四條邊都相等可得AB=BC,每一個(gè)角都是直角可得∠ABC=∠C=90°,然后利用“邊角邊”證明△ABE和△BCF全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAE=∠CBF,再根據(jù)正方形的四個(gè)角都是直角可得∠ABF+∠CBF=90°,然后求出∠BAE+∠ABF=90°,設(shè)AE、BF相交于點(diǎn)G,進(jìn)而得到∠AGB=90°,再根據(jù)垂直的定義得證.
點(diǎn)評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),以及垂直的定義,求出兩三角形全等,從而得到∠BAE=∠CBF是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,E是CB延長線上一點(diǎn),EB=
12
BC,如果F是AB的中點(diǎn),請你在正方形ABCD上找一點(diǎn),與F點(diǎn)連接成線段,并說明它和AE相等的理由.
解:連接
 
,則
 
=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
5
.下列結(jié)論:
①△APD≌△AEB;
②點(diǎn)B到直線AE的距離為
2

③EB⊥ED;
④S△APD+S△APB=1+
6

⑤S正方形ABCD=4+
6
.其中正確結(jié)論的序號是( 。
A、①③④B、①②⑤
C、③④⑤D、①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在正方形ABCD中,P是BC上的點(diǎn),且BP=3PC,Q是CD的中點(diǎn).△ADQ與△QCP是否相似?
為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在正方形ABCD中,AB=8,點(diǎn)E在邊AB上點(diǎn),CE的垂直平分線FP 分別交AD精英家教網(wǎng)、CE、CB于點(diǎn)F、H、G,交AB的延長線于點(diǎn)P.
(1)求證:△EBC∽△EHP;
(2)設(shè)BE=x,BP=y,求y與x之間的函數(shù)解析式,并寫出定義域;
(3)當(dāng)BG=
74
時(shí),求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在正方形ABCD中,E、F分別是AD、CD的中點(diǎn).
(1)線段AF與BE有何關(guān)系.說明理由;
(2)延長AF、BC交于點(diǎn)H,則B、D、G、H這四個(gè)點(diǎn)是否在同一個(gè)圓上.說明理由.

查看答案和解析>>

同步練習(xí)冊答案