【題目】如圖,在中,已知, , 是的中點,點、分別在、邊上運動(點不與點、重合),且保持,連接、、.在此運動變化的過程中,有下列結論,其中正確的結論是( )
①四邊形有可能成為正方形;②是等腰直角三角形;
③四邊形的面積是定值;④點到線段的最大距離為.
A. ①④ B. ①②③ C. ①②④ D. ①②③④
【答案】D
【解析】①當DE⊥AC,DF⊥BC時,此時四邊形CEDF是矩形,由AC=BC,∠ACB=90°,則∠A=∠B=45°,由CD⊥AB,則∠ACD=∠BCD=45°,則AD=CD=BD,同理CE=AE=DE,則此時四邊形CEDF是正方形,正確;
②連接CD,在△ADE和△CDF中,AE=CF, ∠A=∠DCF=45°,AD=CD,
∴△ADE≌△CDF,
∴ED=DF,∠CDF=∠EDA,
又∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=90°=∠EDF,
∴△DFE為等腰直角三角形,正確;
③∵△ADE≌△CDF,
∴S△ADE=S△CDF,
∵S四邊形CEDF=S△CED+S△CFD,
∴S四邊形CEDF=S△CED+S△AED=S△ADC,
∵S△ADC=S△ABC=4,
∴四邊形CEDF面積是定值為4,正確;
④設C到EF的距離為d,CF=x,
∵△DEF是等腰直角三角形,故D到EF的距離為EF,
又四邊形CEDF的面積是定值4,
故S四邊形CEDF=S△CEF+S△FED= (+d)=4,
則d=,當EF越小,則d越大,
由EF=DE,則DE最小時,EF最小,此時d最大.
而當DE⊥AC時,DE=2最小,
此時EF=2,d==.
故正確.
綜上,①②③④都正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A的坐標為(4,0).點P是直線y= x+3在第一象限內(nèi)的點,過P作PMx軸于點M,O是原點.
(1)設點P的坐標為(x, y),試用它的縱坐標y表示△OPA的面積S;
(2)S與y是怎樣的函數(shù)關系?它的自變量y的取值范圍是什么?
(3)如果用P的坐標表示△OPA的面積S,S與x是怎樣的函數(shù)關系?它的自變量的取值范圍是什么?
(4)在直線y= x+3上求一點Q,使△QOA是以OA為底的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D為BC邊的中點,過D點分別作DE∥AB交AC于點E,DF∥AC交AB于點F.
求證:BF=DE.
【答案】證明見解析
【解析】試題分析:根據(jù)兩組對邊分別平行的四邊形為平行四邊形可判定四邊形AFDE是平行四邊形,根據(jù)平行四邊形的性質可得DE=AF,再由D為BC邊的中點,DF∥AC,可得BF=AF,即可得BF=DE.
試題解析:
∵DE∥AB,DF∥AC,
∴DE∥AF,DF∥AE,
∴四邊形AFDE是平行四邊形,
∴DE=AF,
∵D為BC邊的中點,
∴BD=DC,∵DF∥AC,
∴BF=AF,
∴BF=DE.
【題型】解答題
【結束】
26
【題目】如圖,已知:∠C=∠D,OD=OC.求證:DE=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿足一次函數(shù)關系,根據(jù)上表,求出y與x之間的關系式.(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價應定為多少元?
(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 是等邊三角形內(nèi)的一點,連結、、,以為邊作且.連結.
(1)觀察并猜想與之間的大小關系,并證明你的結論.
(2)若, , ,連結,試判斷的形狀,并說明理由.
(3)在(2)的條件下,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,我們把橫、縱坐標都為整數(shù)的點稱為整點,記頂點都是整點的三角形為整點三角形.如圖,已知整點A(2,3),B(4,4),請在所給網(wǎng)格區(qū)域(含邊界)上按要求畫整點三角形.
(1)在圖1中畫一個△PAB,使點P的橫、縱坐標之和等于點A的橫坐標;
(2)在圖2中畫一個△PAB,使點P,B橫坐標的平方和等于它們縱坐標和的4倍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com