【題目】為響應國家的節(jié)能減排政策,某廠家開發(fā)了一種新型的電動車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°31°,ATMN,垂足為T,大燈照亮地面的寬度BC的長為m

1)求BT的長(不考慮其他因素).

2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應時間是0.2s,從發(fā)現(xiàn)危險到電動車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動作到電動車停止的剎車距離是,請判斷該車大燈的設計是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計),并說明理由.

(參考數(shù)據(jù):sin22°≈,tan22°≈,sin31°≈tan31°≈

【答案】1BT=;(2該車大燈的設計不能滿足最小安全距離的要求,理由見解析

【解析】

試題分析:1)在直角ACT中,根據(jù)三角函數(shù)的定義,若AT=3x,則CT=5x,在直角ABT中利用三角函數(shù)即可列方程求解;

2)求出正常人作出反應過程中電動車行駛的路程,加上剎車距離,然后與BT的長進行比較即可.

解:(1)根據(jù)題意及圖知:ACT=31°,ABT=22°

ATMN

∴∠ATC=90°

RtACT中,ACT=31°

tan31°=

可設AT=3x,則CT=5x

RtABT中,ABT=22°

tan22°=

即:

解得:

;

2

,

該車大燈的設計不能滿足最小安全距離的要求.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF

以下結(jié)論:①ADBC; ②∠ACB=2∠ADB; ③∠ADC=90°-∠ABD; ④BD平分∠ADC;⑤∠BDC=BAC.其中正確的結(jié)論有____________。(填寫正確的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A. 5a2﹣3a2=2 B. 2x2+3x2=5x4 C. 3a+2b=5ab D. 7ab﹣6ba=ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點分別為D、E,且=

1)試判斷△ABC的形狀,并說明理由.

2)已知半圓的半徑為5,BC=12,求sin∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形具有而菱形不一定具有的性質(zhì)是(

A. 對角線相等B. 對角線互相垂直平分

C. 對角線平分一組對角D. 四條邊相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若多項式x2+mx+4能用完全平方公式分解因式,則m的值可以是(

A.4 B.-4 C.±2 D.±4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算a·a2的結(jié)果是(  )

A. a B. a2 C. 2a2 D. a3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸、軸分別相交于點A和B.

(1)直接寫出坐標:點A ,點B ;

2以線段AB為一邊在第一象限內(nèi)作ABCD,其頂點D(, )在雙曲線 ()上.

①求證:四邊形ABCD是正方形;

②試探索:將正方形ABCD沿軸向左平移多少個單位長度時,點C恰好落在雙曲線 ()上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的周長為8m,高AE的長為cm,則對角線BD的長為( )

A.2cm B.3cm C.cm D.2cm

查看答案和解析>>

同步練習冊答案