(2005•哈爾濱)已知:⊙O的直徑為14cm,弦AB=10cm,點P為AB上一點,OP=5cm,則AP的長為    cm.
【答案】分析:點P的位置有兩種情況,根據(jù)垂徑定理和勾股定理求解.
解答:解:連接OA,OB,作OE⊥AB,垂足為E.點P的位置有兩種情況:
①當如圖位置時,由垂徑定理知,點E是AB的中點,AE=EB=AB=5,OA=7,
由勾股定理得,OE=2,PE=1,
∴AP=AE-PE=4cm;
②當點P在如圖的點F位置時,可求得EF=1,所以AF=AE+EF=6cm.
故填4或6.
點評:本題利用了垂徑定理和勾股定理求解,注意點P的位置有兩種情況.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•哈爾濱)已知:直線y=2x+6與x軸和y軸分別交于A、C兩點,拋物線y=-x2+bx+c經(jīng)過點A、C,點B是拋物線與x軸的另一個交點.
(1)求拋物線的解析式及B的坐標;
(2)設(shè)點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標;
(3)直線y=x+a與(1)中所求的拋物線交于M、N兩點,問:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2005•哈爾濱)甲、乙兩名同學進行登山比賽,圖中表示甲同學和乙同學沿相同的路線同時從山腳出發(fā)到達山頂過程中,各自行進的路程隨時間變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問題:
(1)分別求出表示甲、乙兩同學登山過程中路程s(千米)與時間t(時)的函數(shù)解析式;(不要求寫出自變量t的取值范圍)
(2)當甲到達山頂時,乙行進到山路上的某點A處,求A點距山頂?shù)木嚯x;
(3)在(2)的條件下,設(shè)乙同學從A處繼續(xù)登山,甲同學到達山頂后休息1小時,沿原路下山,在點B處與乙相遇,此時點B與山頂距離為1.5千米,相遇后甲、乙各自按原來的路線下山和上山,求乙到達山頂時,甲離山腳的距離是多少千米?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省黃石市九年級6月月考數(shù)學試卷(解析版) 題型:解答題

(2005•哈爾濱)已知:直線y=2x+6與x軸和y軸分別交于A、C兩點,拋物線y=-x2+bx+c經(jīng)過點A、C,點B是拋物線與x軸的另一個交點.
(1)求拋物線的解析式及B的坐標;
(2)設(shè)點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標;
(3)直線y=x+a與(1)中所求的拋物線交于M、N兩點,問:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2005•哈爾濱)已知:直線y=2x+6與x軸和y軸分別交于A、C兩點,拋物線y=-x2+bx+c經(jīng)過點A、C,點B是拋物線與x軸的另一個交點.
(1)求拋物線的解析式及B的坐標;
(2)設(shè)點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標;
(3)直線y=x+a與(1)中所求的拋物線交于M、N兩點,問:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2005•哈爾濱)甲、乙兩名同學進行登山比賽,圖中表示甲同學和乙同學沿相同的路線同時從山腳出發(fā)到達山頂過程中,各自行進的路程隨時間變化的圖象,根據(jù)圖象中的有關(guān)數(shù)據(jù)回答下列問題:
(1)分別求出表示甲、乙兩同學登山過程中路程s(千米)與時間t(時)的函數(shù)解析式;(不要求寫出自變量t的取值范圍)
(2)當甲到達山頂時,乙行進到山路上的某點A處,求A點距山頂?shù)木嚯x;
(3)在(2)的條件下,設(shè)乙同學從A處繼續(xù)登山,甲同學到達山頂后休息1小時,沿原路下山,在點B處與乙相遇,此時點B與山頂距離為1.5千米,相遇后甲、乙各自按原來的路線下山和上山,求乙到達山頂時,甲離山腳的距離是多少千米?

查看答案和解析>>

同步練習冊答案