如圖,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0),B(2,2).連接OB,AB.
(1)求該拋物線的解析式;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)135°得到△OA′B′,寫出△OA′B′的邊A′B′的中點(diǎn)P的坐標(biāo).試判斷點(diǎn)P是否在此拋物線上,并說明理由.

【答案】分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,通過聯(lián)立方程組即可求出拋物線的解析式;
(2)過B作BC⊥x軸于C,根據(jù)A、B的坐標(biāo)易求得OC=BC=AC=2,由此可證得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可證得△OAB是等腰直角三角形;
(3)當(dāng)△OAB繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)135°時(shí),OB′正好落在y軸上,易求得OB、AB的長,即可得到OB′、A′B′的長,從而可得到A′、B′的坐標(biāo),進(jìn)而可得到A′B′的中點(diǎn)P點(diǎn)的坐標(biāo),然后代入拋物線中進(jìn)行驗(yàn)證即可.
解答:解:(1)由題意得,
解得
∴該拋物線的解析式為:y=-x2+2x;

(2)過點(diǎn)B作BC⊥x軸于點(diǎn)C,則OC=BC=AC=2;
∴∠BOC=∠OBC=∠BAC=∠ABC=45°;
∴∠OBA=90°,OB=AB;
∴△OAB是等腰直角三角形;

(3)∵△OAB是等腰直角三角形,OA=4,
∴OB=AB=2;
由題意得:點(diǎn)A′坐標(biāo)為(-2,-2
∴A′B′的中點(diǎn)P的坐標(biāo)為(-,-2);
當(dāng)x=-時(shí),y=-×(-2+2×(-)≠-2;
∴點(diǎn)P不在二次函數(shù)的圖象上.
點(diǎn)評:此題主要考查了二次函數(shù)解析式的確定、等腰直角三角形的判定、圖形的旋轉(zhuǎn)變化等知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點(diǎn),N是線段OC上一動點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案