如圖,在△ABC中,AB=BC=1,∠ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)30°得△A1BC1.A1B交AC于點(diǎn)E,A1C1分別交AC,BC于點(diǎn)D,F(xiàn).
(1)試判斷四邊形BC1DA的形狀,并說明理由;
(2)求ED的長(zhǎng).

【答案】分析:(1)先根據(jù)等腰三角形兩底角相等以及三角形內(nèi)角和定理求出∠A1=∠A=30°,再根據(jù)旋轉(zhuǎn)角為30°得到∠ABA1=30°,從而得到∠A1=∠ABA1,然后根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得A1C1∥AB,同理AC∥BC1,最后根據(jù)平行四邊形的定義以及菱形的定義即可證明;
(2)過點(diǎn)E作EG⊥AB于點(diǎn)G,根據(jù)等腰三角形三線合一的性質(zhì)可得AG=AB=,再利用銳角三角形函數(shù)求出AE的長(zhǎng)度,然后根據(jù)ED=AD-AE代入數(shù)據(jù)進(jìn)行計(jì)算即可求解.
解答:解:(1)四邊形BC1DA是菱形.理由如下:
∵∠ABC=120°,AB=BC,
∴∠A=(180°-120°)=30°,
由題意可知∠A1=∠A=30°,
∵旋轉(zhuǎn)角為30°
∴∠ABA1=30,
∴∠A1=∠ABA1,
∴A1C1∥AB,
同理AC∥BC1,
∴四邊形BC1DA是平行四邊形,
∵AB=BC1,
∴四邊形BC1DA是菱形;

(2)過點(diǎn)E作EG⊥AB于點(diǎn)G,
∵∠A=∠ABE=30°,AB=1,
∴AG=GB=,
∵cos∠A=,AE===,
∴ED=AD-AE=1-
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)變換的性質(zhì),等角對(duì)等邊的性質(zhì),平行四邊形的判定,菱形的判定,等腰三角形的性質(zhì)以及銳角三角形函數(shù)值,經(jīng)過角度的計(jì)算得到相等的角是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案