【題目】某工廠大門是一拋物線水泥建筑物(如圖),大門地面寬AB=4 m,頂部C離地面高為4.4 m.

(1)以AB所在直線為x軸,拋物線的對(duì)稱軸為y軸,建立平面直角坐標(biāo)系,求該拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)現(xiàn)有一輛載滿貨物的汽車欲通過(guò)大門,貨物頂點(diǎn)距地面2.8 m,裝貨寬度為2.4 m,請(qǐng)通過(guò)計(jì)算,判斷這輛汽車能否順利通過(guò)大門.

【答案】(1)y=-1.1x2+4.4.(2)這輛汽車能夠通過(guò)大門.

【解析】

先過(guò)AB的中點(diǎn)作AB的垂直平分線建立直角坐標(biāo)系,得出點(diǎn)A、B、C的坐標(biāo),用待定系數(shù)法即可求出過(guò)此三點(diǎn)的拋物線解析式,判斷點(diǎn)(-1.2,2.8)或點(diǎn)(1.2,2.8)與拋物線的關(guān)系即可.

解:(1)如圖,過(guò)AB的中點(diǎn)作AB的垂直平分線,建立平面直角坐標(biāo)系.點(diǎn)A,B,C的坐標(biāo)分別為 A(-2,0),B(2,0),C(0,4.4).

設(shè)拋物線的表達(dá)式為y=a(x-2)(x+2).

將點(diǎn)C(0,4.4)代入得

a(0-2)(0+2)=4.4,解得a=-1.1,

∴y=-1.1(x-2)(x+2)=-1.1x2+4.4.

故此拋物線的表達(dá)式為y=-1.1x2+4.4.

(2)∵貨物頂點(diǎn)距地面2.8 m,裝貨寬度為2.4,

∴只要判斷點(diǎn)(-1.2,2.8)或點(diǎn)(1.2,2.8)與拋物線的位置關(guān)系即可.

將x=1.2代入拋物線,得 y=2.816>2.8,

∴點(diǎn)(-1.2,2.8)和點(diǎn)(1.2,2.8)都在拋物線內(nèi).

∴這輛汽車能夠通過(guò)大門.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);

(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);

(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.

當(dāng)t為   秒時(shí),PAD的周長(zhǎng)最?當(dāng)t為   秒時(shí),PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))

點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在一點(diǎn)P,使PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線是同一平面內(nèi)的一組平行線.

(1)如圖1.正方形4個(gè)頂點(diǎn)都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點(diǎn),點(diǎn)分別在直線上,求正方形的面積;

(2)如圖2,正方形4個(gè)頂點(diǎn)分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為

①求證:;

②設(shè)正方形的面積為,求證

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向10(1+)海里的C處,為了防止某國(guó)海巡警干擾,請(qǐng)求我A處的漁監(jiān)船前往C處護(hù)航.如圖,已知C位于A處的東北方向上,A位于B的北偏西30°方向上,則AC之間的距離為(  )

A. 10海里 B. 20海里 C. 20海里 D. 10海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+3(a≠0)過(guò)A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是(  )

A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點(diǎn)A1,3),過(guò)點(diǎn)Ax軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:

①無(wú)論x取何值,y2的值總是正數(shù);

a=1

③當(dāng)x=0時(shí),y2﹣y1=4

2AB=3AC

其中正確結(jié)論是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關(guān)于x的方程ax2+bx+k=0有實(shí)數(shù)解,則k>c﹣n;④當(dāng)n=﹣ 時(shí),△ABP為等腰直角三角形.其中正確結(jié)論是________(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OA、OB、OC都是O的半徑,AOB=2BOC

(1)求證:ACB=2BAC;

(2)若AC平分OAB,求AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3與拋物線交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)AB重合),過(guò)點(diǎn)Py軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求bc的值.

2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.

3)當(dāng)點(diǎn)PAB兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求Cm之間的函數(shù)關(guān)系式,并寫出Cm增大而增大時(shí)m的取值范圍.

4)當(dāng)PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案