【題目】 如圖,矩形ABCD中,AB=10,BC=8,P為AD上一點,將△ABP沿BP翻折至△EBP(點A落在點E處),PE與CD相交于點O,且OE=OD.
(1)求證:△PDO≌△GEO;
(2)求DP的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是以AB為直徑的⊙O上一動點,過點C作⊙O直徑CD,過點B作BE⊥CD于點E.已知AB=6cm,設弦AC的長為xcm,B,E兩點間的距離為ycm(當點C與點A或點B重合時,y的值為0).
小冬根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小冬的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
經(jīng)測量m的值是(保留一位小數(shù)).
(2)建立平面直角坐標系,描出表格中所有各對對應值為坐標的點,畫出該函數(shù)的圖象;
(3)在(2)的條件下,當函數(shù)圖象與直線相交時(原點除外),∠BAC的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線C:y=x2+(2m﹣1)x﹣2m.
(1)若m=1,拋物線C交x軸于A,B兩點,求AB的長;
(2)若一次函數(shù)y=kx+mk的圖象與拋物線C有唯一公共點,求m的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正確結(jié)論的番號是( 。
A.①②④⑤B.①②③④⑤C.①②④D.①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在平面直角坐標系中,點A和點B分別在x軸和y軸的正半軸上,OA=3,OB=2OA,C為直線y=2x與直線AB的交點,點D在線段OC上,OD=.
(1)求點C的坐標;
(2)若P為線段AD上一動點(不與A、D重合).P的橫坐標為x,△POD的面積為S,請求出S與x的函數(shù)關(guān)系式;
(3)若F為直線AB上一動點,E為x軸上一點,是否存在以O、D、E、F為頂點的四邊形是平行四邊形?若存在,寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從熱氣球C處測得地面A,B兩點的俯角分別為30°,45°,此時熱氣球C處所在位置到地面上點A的距離為400米.求地面上A,B兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).
(1)請求出天橋總長和馬路寬度AB的比;
(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達B地,平均速度是2.5m/s;返回時從天橋由BC→CD→DA到達A地,平均速度是1.5m/s,結(jié)果比去時多用了12.8s,請求出馬路寬度AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.
(1)直接寫出甲投放的垃圾恰好是A類的概率;
(2)求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com