【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)拋物線的對稱軸為_______;
(2)若當(dāng)時,的最小值是,求當(dāng)時,的最大值;
(3)已知直線與拋物線存在兩個交點(diǎn),設(shè)左側(cè)的交點(diǎn)為點(diǎn),當(dāng)時,求的取值范圍.
【答案】(1);(2)當(dāng)時,,即的最大值是;(3)
【解析】
(1)根據(jù)拋物線的對稱軸公式即可得結(jié)論;
(2)根據(jù)拋物線的對稱軸為x=2,可得頂點(diǎn)在1≤x≤5范圍內(nèi),和y的最小值是-1,得頂點(diǎn)坐標(biāo)為(2,-1),把頂點(diǎn)(2,-1)代入y=ax2-4ax+1,可得a的值,進(jìn)而可得y的最大值;
(3)當(dāng)x=-2時,P(-2,5),把P(-2,5)代入y=ax2-4ax+1,當(dāng)x1=-1時,P(-1,4),把P(-1,4)代入y=ax2-4ax+1,分別求出a的值,再根據(jù)函數(shù)的性質(zhì)即可得a的取值范圍.
(1)拋物線的對稱軸為:,
故答案為:x=2;
(2)解:∵拋物線的對稱軸為x=2,
∴頂點(diǎn)在1≤x≤5范圍內(nèi),
∵y的最小值是-1,
∴頂點(diǎn)坐標(biāo)為(2,-1).
∵a>0,開口向上,
∴當(dāng)x>2時,y隨x的增大而增大,
即x=5時,y有最大值,
∴把頂點(diǎn)(2,-1)代入y=ax2-4ax+1,
∴4a-8a+1=-1,
解得
∴
∴當(dāng)x=5時,
即y的最大值是;
(3)當(dāng)x=-2時,P(-2,5),
把P(-2,5)代入y=ax2-4ax+1,
∴4a+8a+1=5,
解得a=,
當(dāng)x1=-1時,P(-1,4),
把P(-1,4)代入y=ax2-4ax+1,
∴a+4a+1=4,
解得a=,
∴≤a<.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC中,.OA=OC, BA=BC.以O為圓心,以OA為半徑作☉O
(1)求證:BC是☉O的切線:
(2)連接BO并延長交⊙O于點(diǎn)D,延長AO交⊙O于點(diǎn)E,與此的延長線交于點(diǎn)F若.
①補(bǔ)全圖形;
②求證:OF=OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程ax2+2x﹣3=0有兩個不相等的實(shí)數(shù)根.
(1)求a的取值范圍;
(2)若此方程的一個實(shí)數(shù)根為1,求a的值及方程的另一個實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)的圖象與y軸交于點(diǎn)A,過點(diǎn),且平行于x軸的直線與一次函數(shù)的圖象,反比例函數(shù)的圖象分別交于點(diǎn)C,D.
(1)求點(diǎn)D 的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)m = 1時,用等式表示線段BD與CD長度之間的數(shù)量關(guān)系,并說明理由;
(3)當(dāng)BD≤CD時,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1) ,將一個正六邊形各邊延長,構(gòu)成一個正六角星形AFBDCE,它的面積為1,取△ABC和△DEF各邊中點(diǎn),連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和1D1E1F1各邊中點(diǎn),連接成正六角星形A2F2B2D2C2E 2F 2,如圖(3) 中陰影部分;如此下去…,則正六角星形AnFnBnDnCnE nF n的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一筆總額為元的獎金,分為一等獎、二等獎和三等獎,獎金金額均為整數(shù),每個一等獎的獎金是每個二等獎獎金的兩倍,每個二等獎的獎金是每個三等獎獎金的兩倍,若把這筆獎金發(fā)給個人,評一、二、三等獎的人數(shù)分別為,且,那么三等獎的獎金金額是_______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD為矩形,曲線L經(jīng)過點(diǎn)D.點(diǎn)Q是四邊形ABCD內(nèi)一定點(diǎn),點(diǎn)P是線段AB上一動點(diǎn),作PM⊥AB交曲線L于點(diǎn)M,連接QM.
小東同學(xué)發(fā)現(xiàn):在點(diǎn)P由A運(yùn)動到B的過程中,對于x1=AP的每一個確定的值,θ=∠QMP都有唯一確定的值與其對應(yīng),x1與θ的對應(yīng)關(guān)系如表所示:
x1=AP | 0 | 1 | 2 | 3 | 4 | 5 |
θ=∠QMP | α | 85° | 130° | 180° | 145° | 130° |
小蕓同學(xué)在讀書時,發(fā)現(xiàn)了另外一個函數(shù):對于自變量x2在﹣2≤x2≤2范圍內(nèi)的每一個值,都有唯一確定的角度θ與之對應(yīng),x2與θ的對應(yīng)關(guān)系如圖2所示:
根據(jù)以上材料,回答問題:
(1)表格中α的值為 .
(2)如果令表格中x1所對應(yīng)的θ的值與圖2中x2所對應(yīng)的θ的值相等,可以在兩個變量x1與x2之間建立函數(shù)關(guān)系.
①在這個函數(shù)關(guān)系中,自變量是 ,因變量是 ;(分別填入x1和x2)
②請在網(wǎng)格中建立平面直角坐標(biāo)系,并畫出這個函數(shù)的圖象;
③根據(jù)畫出的函數(shù)圖象,當(dāng)AP=3.5時,x2的值約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果的兩個端點(diǎn)分別在的兩邊上(不與點(diǎn)重合),并且除端點(diǎn)外的所有點(diǎn)都在的內(nèi)部,則稱是的“連角弧”.
(1)圖1中,是直角,是以為圓心,半徑為1的“連角弧”.
①圖中的長是______,并在圖中再作一條以為端點(diǎn)、長度相同的“連角弧”;
②以為端點(diǎn),弧長最長的“連角弧”的長度是_______.
(2)如圖2,在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)在軸正半軸上,若是半圓,也是的“連角弧”,求的取值范圍.
(3)如圖3,已知點(diǎn)分別在射線上,是的“連角弧”,且所在圓的半徑為,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com