【題目】如圖,△ABD和△BDC都是直角三角形,且∠ABD=∠BDC=90°,∠BAD=30°,∠DBC=45°,則tan∠DAC的值為( )
A. B. C. D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 y=﹣x2﹣2x+3 的圖象與 x 軸交于 A、B 兩點(點 A 在點 B 的左邊),與 y軸交于點 C,點 D 為拋物線的頂點.
(1)求點 A、B、C 的坐標;
(2)點 M(m,0)為線段 AB 上一點(點 M 不與點 A、B 重合),過點 M 作 x 軸的垂線,與直線 AC 交于點 E,與拋物線交于點 P,過點 P 作 PQ∥AB 交拋物線于點 Q,過點 Q 作 QN⊥x 軸于點 N,可得矩形 PQNM.如圖,點 P 在點 Q 左邊,試用含 m 的式子表示矩形 PQNM 的周長;
(3)當矩形 PQNM 的周長最大時,m 的值是多少?并求出此時的△AEM 的面積;
(4)在(3)的條件下,當矩形 PMNQ 的周長最大時,連接 DQ,過拋物線上一點 F 作 y 軸的平行線,與直線 AC 交于點 G(點 G 在點 F 的上方).若 FG=2DQ,求點 F 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,正確的是( )
A. 兩個相似三角形面積比為2:3,則周長比是4:9
B. 相似圖形一定構成位似圖形
C. 如果點D、E分別在△ABC的邊AB、AC上,△ABC與△ADE相似,則DE∥BC
D. 在Rt△ABC中,斜邊上的高CD2=ADBD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖像經過點,與軸交于點,、分別為軸、直線上的動點,當四邊形的周長最小時,所在直線對應的函數(shù)表達式是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A是函數(shù) (x<0)圖象上一點,AO的延長線交函數(shù) (x>0,k>0的常數(shù))的圖象于點C,點A關于y軸的對稱點為A′,點C關于x軸的對稱點為C′且點O、A′、C′在同一條直線上,連接CC′,交x軸于點B,連接AB,AA′,A′C′,若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F(xiàn).
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB=DC,AD=3cm,BC=7cm,∠B=60°,P為BC邊上一點(不與B,C重合),連接AP,過P點作PE交DC于E,使得∠APE=∠B.
(1)求證:△ABP∽△PCE;
(2)求AB的長;
(3)在邊BC上是否存在一點P,使得DE:EC=5:3?如果存在,求BP的長;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘漁船位于港口A的北偏東60°方向,距離港口20海里的B處,它沿北偏西37°方向航行至C處突然出現(xiàn)故障,在C處等待救援,B,C之間的距離為10海里,救援船從港口A出發(fā),經過20分鐘到達C處,求救援船的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,結果取整數(shù))
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com