(2009•慶陽)如圖,在平面直角坐標系中,將一塊腰長為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標軸上,直角頂點C的坐標為(-1,0),點B在拋物線y=ax2+ax-2上
(1)點A的坐標為______,點B的坐標為______;
(2)拋物線的關系式為______;
(3)設(2)中拋物線的頂點為D,求△DBC的面積;
(4)將三角板ABC繞頂點A逆時針方向旋轉90°,到達△AB′C″的位置.請判斷點B′、C″是否在(2)中的拋物線上,并說明理由.

【答案】分析:(1)求A點的坐標就是求OA的長,可在直角三角形OAC中,根據(jù)AC=,OC=1來求出OA的長,即可得出A的坐標.如果過B作x軸的垂線,假設垂足為F,那么△ACO≌△CBH,OA=CF,BF=OC,由此可求出B的坐標;
(2)將已經求出的A,B的坐標代入拋物線的解析式中即可求出拋物線的解析式;
(3)根據(jù)(2)的函數(shù)關系式即可求出D點的坐標.求△DBC的面積時,可將△DBC分成△CBE和△DCE兩部分(假設BD交x軸于E).可先根據(jù)B,D的坐標求出BD所在直線的解析式,進而求出E點的坐標,那么可求出CE的長,然后以B,D兩點的縱坐標的絕對值分別作為△BCE和△DCE的高,即可求出△DBC的面積;
(4)本題的關鍵是求出B′,C′兩點的坐標.過點B′作B′M⊥y軸于點M,過點B作BN⊥y軸于點N,過點C″作C″P⊥y軸于點P.然后仿照(1)中求坐標時的方法,通過證Rt△AB′M≌Rt△BAN來得出B′的坐標.同理可得出C′的坐標.然后將兩點的坐標分別代入拋物線的解析式中,進而可判斷出兩點是否在拋物線上.
解答:解:由題意得
(1)∵AC=,CO=1,
∴AO==2,
∴A(0,2),
做BF⊥OC,
∵BC=AC,∠AOC=∠BFC,
∠CAO=∠BCF,
∴△BFC≌△COA,
∴CF=AO=2,
∴B(-3,1)
故答案為:A(0,2),B(-3,1).

(2)將B(-3,1)代入y=ax2+ax-2得:
1=9a-3a-2,
∴a=
∴y=x2+x-2.

(3)如圖1,可求得拋物線的頂點D(-,).
設直線BD的關系式為y=kx+b,將點B、D的坐標代入,
求得k=-,b=-,
∴BD的關系式為y=-x-
設直線BD和x軸交點為E,則點E(,0),CE=
∴△DBC的面積為SCBE+SCED=××1+××,
=

(4)如圖2,過點B′作B′M⊥y軸于點M,過點B作BN⊥y軸于點N,
過點C″作C″P⊥y軸于點P.(8分)
在Rt△AB′M與Rt△BAN中,
∵AB=AB′,∠AB′M=∠BAN=90°-∠B′AM-∠AMB'-∠ANB,
∴Rt△AB′M≌Rt△BAN.
∴B′M=AN=1,AM=BN=3,
∴B′(1,-1).
同理△AC′P≌△CAO,C′P=OA=2,AP=OC=1,可得點C′(2,1);
將點B′、C′的坐標代入y=x2+x-2,可知點B′、C′在拋物線上.
(事實上,點P與點N重合)
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形全等、圖形旋轉變換等重要知識點;綜合性強,考查學生數(shù)形結合的數(shù)學思想方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷23(靖江初中 鄭波)(解析版) 題型:填空題

(2009•慶陽)如圖,正方形OEFG和正方形ABCD是位似形,點F的坐標為(1,1),點C的坐標為(4,2),則這兩個正方形位似中心的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年甘肅省慶陽市中考數(shù)學試卷(解析版) 題型:填空題

(2009•慶陽)如圖,正方形OEFG和正方形ABCD是位似形,點F的坐標為(1,1),點C的坐標為(4,2),則這兩個正方形位似中心的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年甘肅省慶陽市中考數(shù)學試卷(解析版) 題型:填空題

(2009•慶陽)如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運動時間t(單位:秒)的函數(shù)關系式是h=9.8t-4.9t2,那么小球運動中的最大高度h最大=    米.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年浙江省臺州市中考數(shù)學試卷(解析版) 題型:填空題

(2009•慶陽)如圖,從地面垂直向上拋出一小球,小球的高度h(單位:米)與小球運動時間t(單位:秒)的函數(shù)關系式是h=9.8t-4.9t2,那么小球運動中的最大高度h最大=    米.

查看答案和解析>>

同步練習冊答案