【題目】如圖,△ABC中,AB=AC=6,BC=8,點D、E分別在BC,AC上,且∠ADE=∠B,若△ADE是等腰三角形,則BD的長為_________.
【答案】2或3.5
【解析】
根據(jù)等腰三角形的判定與性質(zhì),可得∠ADC與∠DAC的關(guān)系,根據(jù)三角形的外角的性質(zhì),可得∠AED=∠EDC+∠C=∠EDC+∠ADE,再根據(jù)等腰三角形的性質(zhì),可得答案.
∵AB=AC=6,
∴∠B=∠C=∠ADE.
當(dāng)DA=DE時,
∴∠DAE=∠DEA,
∴∠AED=∠EDC+∠C=∠EDC+∠ADE,
∴∠DAC=∠ADC
∴DC=AC=6,
∴BD=2,
當(dāng)AE=DE時,△ADE是等腰三角形,即∠DAE=∠ADE=∠B=∠C
∴△ADC∽△BAC,
∴,
∴,
∴,
∴;
綜上所述:當(dāng)BD=2或3.5時,△ADE是等腰三角形,
故答案為:2或3.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解七年級學(xué)生體育測試情況,以七年級(1)班學(xué)生的體育測試成績?yōu)闃颖,?/span>A,B,C,D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下)
(1)計算D級的學(xué)生人數(shù),并把條形統(tǒng)計圖補(bǔ)充完整;
(2)計算扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù):
(3)若該校七年級有600名學(xué)生,請估計體育測試中B級學(xué)生人數(shù)約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°.
(1)用尺規(guī)在邊AB上求作一點P,使PC=PB,并連接PC;(不寫作法,保留作圖痕跡)
(2)當(dāng)AC=3,BC=4時,△ACP的周長= ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一紙杯,它的母線AC和EF延長后形成的立體圖形是圓錐,該圓錐的側(cè)面展開圖形是扇形OAB.經(jīng)測量,紙杯上開口圓的直徑是6cm,下底面直徑為4cm,母線長為EF=8cm.求扇形OAB的圓心角及這個紙杯的表面積(面積計算結(jié)果用表示) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點在射線上(不與點、點重合),將線段繞逆時針旋轉(zhuǎn)得到線段,作射線與射線,兩射線交于點.
(1)若點在線段上,如圖1,請直接寫出與的關(guān)系.
(2)若點在線段的延長線上,如圖2,(1)中的結(jié)論還成立嗎?請說明理由.
(3)在(2)的條件下,連接,為的中點,連接,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,直線和相交于點A,且分別與x軸交于B,C兩點,過點A的雙曲線()與直線的另一交點為點D.
(1)求雙曲線的解析式;
(2)求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店每天售出甲、乙兩種筆,統(tǒng)計后發(fā)現(xiàn):甲、乙兩種筆同一天售出量之間滿足一次函數(shù)的關(guān)系,設(shè)甲、乙兩種筆同一天的售出量分別為x(支)、y(支),部分?jǐn)?shù)據(jù)如表所示(下表中每一列數(shù)據(jù)表示甲、乙兩種筆同一天的售出量).
甲種筆售出x(支) | … | 4 | 6 | 8 | … |
乙種筆售出y(支) | … | 6 | 12 | 18 | … |
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫出函數(shù)的定義域)
(2)某一天文具店售出甲、乙兩種筆的營業(yè)額分別為30元和120元,如果乙種筆每支售價比甲種筆每支售價多2元,那么甲、乙兩種筆這天各售出多少支?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的三個頂點坐標(biāo)分別為,,.
(1)畫出關(guān)于軸對稱的;
(2)以點為位似中心,在網(wǎng)格中畫出的位似圖形,使與的相似比為.
(3)設(shè)點為內(nèi)一點,則依上述兩次變換后,點在內(nèi)的對應(yīng)點的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與軸交于A,B兩點,與軸交于點C,連接BC.
(1)如圖1,求直線BC的表達(dá)式;
(2)如圖1,點P是拋物線上位于第一象限內(nèi)的一點,連接PC,PB,當(dāng)△PCB面積最大時,一動點Q從點P從出發(fā),沿適當(dāng)路徑運(yùn)動到軸上的某個點G處,再沿適當(dāng)路徑運(yùn)動到軸上的某個點H處,最后到達(dá)線段BC的中點F處停止,求當(dāng)△PCB面積最大時,點P的坐標(biāo)及點Q在整個運(yùn)動過程中經(jīng)過的最短路徑的長;
(3)如圖2,在(2)的條件下,當(dāng)△PCB面積最大時,把拋物線向右平移使它的圖象經(jīng)過點P,得到新拋物線,在新拋物線上,是否存在點E,使△ECB的面積等于△PCB的面積.若存在,請求出點E的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com