【題目】如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是(  。

A. B. aC. D.

【答案】A

【解析】

CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用邊角邊證明∴△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MGCH時最短,再根據(jù)∠BCH=30°求解即可.

如圖,取BC的中點G,連接MG

∵旋轉(zhuǎn)角為60°,

∴∠MBH+HBN=60°

又∵∠MBH+MBC=ABC=60°,

∴∠HBN=GBM

CH是等邊ABC的對稱軸,

HB=AB,

HB=BG

又∵MB旋轉(zhuǎn)到BN,

BM=BN

MBGNBH中,

,

∴△MBG≌△NBHSAS),

MG=NH,

根據(jù)垂線段最短,MGCH時,MG最短,即HN最短,

此時∵∠BCH=×60°=30°,CG=AB=×2a=a,

MG=CG=×a=

HN=,

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

工廠加工某種新型材料,首先要將材料進行加溫處理,使這種材料保持在一定的溫度范圍內(nèi)方可進行繼續(xù)加工處理這種材料時,材料溫度是時間的函數(shù)下面是小明同學(xué)研究該函數(shù)的過程,把它補充完整:

在這個函數(shù)關(guān)系中,自變量x的取值范圍是______

如表記錄了17min內(nèi)10個時間點材料溫度y隨時間x變化的情況:

時間

0

1

3

5

7

9

11

13

15

17

溫度

15

24

42

60

m

上表中m的值為______

如圖,在平面直角坐標系xOy中,已經(jīng)描出了上表中的部分點根據(jù)描出的點,畫出該函數(shù)的圖象.

根據(jù)列出的表格和所畫的函數(shù)圖象,可以得到,當時,yx之間的函數(shù)表達式為______,當時,yx之間的函數(shù)表達式為______

根據(jù)工藝的要求,當材料的溫度不低于時,方可以進行產(chǎn)品加工,在圖中所示的溫度變化過程中,可以進行加工的時間長度為______min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,PD切O于點C,與BA的延長線交于點D,DEPO交PO延長線于點E,連接PB,EDB=EPB

(1)求證:PB是的切線

(2)若PB=6,DB=8,求O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙OBD⊙O的直徑,AE⊥CD于點EDA平分∠BDE

1)求證:AE⊙O的切線;

2)如果AB=4AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABBC,對角線AC、BD交于點O,BD平分∠ABC,過點DDEBC,交BC的延長線于點E,連接OE

1)求證:四邊形ABCD是菱形;

2)若DC2AC4,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:方程cx2+bx+a0是一元二次方程ax2+bx+c0的倒方程.

1)已知x2x2+2x+c0的倒方程的解,求c的值;

2)若一元二次方程ax22x+c0無解,求證:它的倒方程也一定無解;

3)一元二次方程ax22x+c0a≠c)與它的倒方程只有一個公共解,它的倒方程只有一個解,求ac的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點P在射線BC上(異于點B、C),直線AP與對角線BD及射線DC分別交于點F、Q

(1)若BP=,求BAP的度數(shù);

(2)若點P在線段BC上,過點F作FGCD,垂足為G,當FGC≌△QCP時,求PC的長;

(3)以PQ為直徑作M.

①判斷FC和M的位置關(guān)系,并說明理由;

②當直線BD與M相切時,直接寫出PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線)與,軸分別交于,兩點,以為邊在直線的上方作正方形,反比例函數(shù)的圖象分別過點和點.,則的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京杭大運河是世界文化遺產(chǎn).綜合實踐活動小組為了測出某段運河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點A、B和點C、D,先用卷尺量得AB=160m,CD=40m,再用測角儀測得∠CAB=30°,DBA=60°,求該段運河的河寬(即CH的長).

查看答案和解析>>

同步練習(xí)冊答案