【題目】如圖,矩形ABCD中,AB=4,AD=3,M是邊CD上一點(diǎn),將△ADM沿直線AM對(duì)折,得到△ANM

1)當(dāng)AN平分∠MAB時(shí),求DM的長(zhǎng);

2)連接BN,當(dāng)DM=1時(shí),求△ABN的面積;

3)當(dāng)射線BN交線段CD于點(diǎn)F時(shí),求DF的最大值

【答案】(1)DM=;(2);(3)

【解析】

試題分析:(1)由折疊性質(zhì)得∠MAN=∠DAM,證出∠DAM=∠MAN=∠NAB,由三角函數(shù)得出DM=ADtan∠DAM=即可;

(2)延長(zhǎng)MN交AB延長(zhǎng)線于點(diǎn)Q,由矩形的性質(zhì)得出∠DMA=∠MAQ,由折疊性質(zhì)得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,證出MQ=AQ,設(shè)NQ=x,則AQ=MQ=1+x,證出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面積;

(3)過(guò)點(diǎn)A作AH⊥BF于點(diǎn)H,證明△ABH∽△BFC,得出對(duì)應(yīng)邊成比例,得出當(dāng)點(diǎn)N、H重合(即AH=AN)時(shí),AH最大,BH最小,CF最小,DF最大,此時(shí)點(diǎn)M、F重合,B、N、M三點(diǎn)共線,由折疊性質(zhì)得:AD=AH,由AAS證明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出結(jié)果.

試題解析:(1)由折疊性質(zhì)得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四邊形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=ADtan∠DAM=3×tan30°==;

(2)延長(zhǎng)MN交AB延長(zhǎng)線于點(diǎn)Q,如圖1所示∵四邊形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折疊性質(zhì)得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,設(shè)NQ=x,則AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:,,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB===ANNQ=

(3)過(guò)點(diǎn)A作AH⊥BF于點(diǎn)H,如圖2所示∵四邊形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴當(dāng)點(diǎn)N、H重合(即AH=AN)時(shí),AH最大,BH最小,CF最小,DF最大,此時(shí)點(diǎn)M、F重合,B、N、M三點(diǎn)共線,如圖3所示:

由折疊性質(zhì)得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,∵∠HBA=BFC,AHB=BCF,AH=BC,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH=,∴CF=,∴DF的最大值=DC﹣CF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A地途徑B地、C地,終點(diǎn)E地的長(zhǎng)途汽車(chē)上原有乘客(6x+2y)人,在B地停靠時(shí),上來(lái)(2x﹣y)人,在C地停靠時(shí),上來(lái)了(2x+3y)人,又下去了(5x﹣2y)人.

(1)途中兩次共上車(chē)多少人?

(2)到終點(diǎn)站E地時(shí),車(chē)上共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不論x為何值,函數(shù)yax2+bx+ca≠0)的值恒大于0的條件是( 。

A. a>0,△>0 B. a>0,△<0 C. a<0,△<0 D. a<0,△>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】a3a4a+(a24+(﹣2a42

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直線y=2x-3向上平移5個(gè)單位可得______直線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點(diǎn)C從A點(diǎn)出發(fā),在邊AO上以2cm/s的速度向O點(diǎn)運(yùn)動(dòng),與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以1.5cm/s的速度向O點(diǎn)運(yùn)動(dòng),過(guò)OC的中點(diǎn)E作CD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動(dòng)了 s時(shí),以C點(diǎn)為圓心,1.5cm為半徑的圓與直線EF相切

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形的一個(gè)外角是140° ,則其底角是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校去年投資2萬(wàn)元購(gòu)買(mǎi)實(shí)驗(yàn)器材,預(yù)計(jì)今明2年的投資總額為8萬(wàn)元.若該校這兩年購(gòu)買(mǎi)的實(shí)驗(yàn)器材的投資年平均增長(zhǎng)率為x,則可列方程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一枚硬幣在桌面上快速旋轉(zhuǎn),給人的印象是一個(gè)球,這說(shuō)明的數(shù)學(xué)原理是________

查看答案和解析>>

同步練習(xí)冊(cè)答案