【題目】某天,小明來到體育館看球賽,進(jìn)場時(shí),發(fā)現(xiàn)門票還在家里,此時(shí)離比賽開始還有25,于是立即步行回家取票同時(shí),他父親從家里出發(fā)騎自行車以他3倍的速度給他送票,兩人在途中相遇,相遇后小明立即坐父親的自行車趕回體育館.如圖中線段AB、OB分別表示父子倆送票、取票過程中離體育館的路程與所用時(shí)間之間的圖像,結(jié)合圖像解答下列問題(假設(shè)騎自行車和步行的速度始終保持不變):

1)圖中O點(diǎn)表示________;A點(diǎn)表示________;B點(diǎn)表示________

2)從圖中可知,小明家離體育館________m,父子倆在出發(fā)后________相遇.

3)你能求出父親與小明相遇時(shí)距離體育館還有多遠(yuǎn)?

4)小明能否在比賽開始之前趕回體育館?

【答案】1)體育館,小明家,小明與他父親相遇的地方;(2360015;(3)父親與小明相遇時(shí)距離體育館還有;(4)小明能在比賽開始之前趕回體育館.

【解析】

1)觀察圖象得到圖中線段AB、OB分別表示父、子送票、取票過程,于是得到O點(diǎn)表示體育館,A點(diǎn)表示小明家;B點(diǎn)表示小明與他父親相遇的地方;
2)觀察圖象得到小明家離體育館有3600米,小明到相遇地點(diǎn)時(shí)用了15分鐘,則得到父子倆在出發(fā)后15分鐘相遇;
3)設(shè)小明的速度為x/分,則他父親的速度為3x/分,利用父子倆在出發(fā)后15分鐘相遇得到15×x+3x×15=3600,解得x=60/分,則父親與小明相遇時(shí)距離體育館還有15x=900米;
4)由(3)得到從B點(diǎn)到O點(diǎn)的速度為3x=180/秒,則從B點(diǎn)到O點(diǎn)的所需時(shí)間==5(分),得到小明取票回到體育館用了15+5=20分鐘,小于25分鐘,可判斷小明能在比賽開始之前趕回體育館.

解:(1圖中線段AB、OB分別表示父、子送票、取票過程,
∴O點(diǎn)表示體育館,A點(diǎn)表示小明家;B點(diǎn)表示小明與他父親相遇的地方;
2∵O點(diǎn)與A點(diǎn)相距3600米,
小明家離體育館有3600米,
從點(diǎn)O點(diǎn)到點(diǎn)B用了15分鐘,
父子倆在出發(fā)后15分鐘相遇;
3)設(shè)小明的速度為x/分,則他父親的速度為3x/分,
根據(jù)題意得15×x+3x×15=3600,
解得x=60/分,
∴15x=15×60=900(米)
即父親與小明相遇時(shí)距離體育館還有900米;
4B點(diǎn)到O點(diǎn)的速度為3x=180/秒,
B點(diǎn)到O點(diǎn)的所需時(shí)間==5(分),
而小明從體育館到點(diǎn)B用了15分鐘,
小明從點(diǎn)O到點(diǎn)B,再從點(diǎn)B到點(diǎn)O15+5=20分,
小明從體育館出發(fā)取票時(shí),離比賽開始還有25分鐘,
小明能在比賽開始之前趕回體育館.
故答案為:體育館,小明家,小明與他父親相遇的地方;3600,15900;小明能在比賽開始之前趕回體育館.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是長方形,四邊形AEFG是正方形,點(diǎn)E,G分別在AB,AD上,連接FC,過點(diǎn)EEHFCBC于點(diǎn)H.若∠BCF=30°CD=4,CF=6,則正方形AEFG的面積為(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行漢字聽寫比賽,每位學(xué)生聽寫漢字39個(gè).比賽結(jié)束后隨機(jī)抽查部分學(xué)生聽寫結(jié)果,圖1,圖2是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分

組別

聽寫正確的個(gè)數(shù)x

人數(shù)

A

0≤x8

10

B

8x16

15

C

16x24

25

D

24x32

m

E

32x40

n

根據(jù)以上信息解決下列問題:

(1)本次共隨機(jī)抽查了多少名學(xué)生,求出m,n的值并補(bǔ)全圖2的條形統(tǒng)計(jì)圖;

(2)求出圖1的度數(shù);

(3)該校共有3000名學(xué)生,如果聽寫正確的個(gè)數(shù)少于24個(gè)定為不合格,請你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組做用頻率估計(jì)概率的試驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是(  )

A. 石頭、剪刀、布的游戲中小明隨機(jī)出的是剪刀

B. 一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃

C. 暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別從中任取一球是黃球

D. 擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB = 6cm,∠CAB = 25°,P是線段AB上一動點(diǎn)過點(diǎn)PPMAB交射線AC于點(diǎn)M,連接MB,過點(diǎn)PPNMB于點(diǎn)N.設(shè)A,P兩點(diǎn)間的距離為xcm,PN兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值均為0)小海根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小海的探究過程,請補(bǔ)充完整:

1)通過取點(diǎn)、畫圖、測量,得到了xy的幾組值,如下表:

x/cm

0.00

0.60

1.00

1.51

2.00

2.75

3.00

3.50

4.00

4.29

4.90

5.50

6.00

y/cm

0.00

0.29

0.47

0.70

1.20

1.27

1.37

1.36

1.30

<>1.00

0.49

0.00

說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留兩位小數(shù))

2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)y=0.5時(shí),與之對應(yīng)的值的個(gè)數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件.已知生產(chǎn)一件A種產(chǎn)品需用甲種原料9千克、乙種原料3千克,可獲利潤700元;生產(chǎn)一件B種產(chǎn)品需用甲種原料4千克、乙種原料10千克,可獲利潤1200元。設(shè)生產(chǎn)A種產(chǎn)品的生產(chǎn)件數(shù)為x, A、B兩種產(chǎn)品所獲總利潤為y (元)

(1)試寫出yx之間的函數(shù)關(guān)系式;

(2)求出自變量x的取值范圍;

(3)利用函數(shù)的性質(zhì)說明哪種生產(chǎn)方案獲總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了更好的開展學(xué)校特色體育教育,從全校八年級的各班分別隨機(jī)抽取了5名男生和5名女生,組成了一個(gè)容量為60的樣本,進(jìn)行各項(xiàng)體育項(xiàng)目的測試,了解他們的身體素質(zhì)情況.下表是整理樣本數(shù)據(jù),得到的關(guān)于每個(gè)個(gè)體的測試成績的部分統(tǒng)計(jì)表、圖:某校60名學(xué)生體育測試成績頻數(shù)分布表

成績

劃記

頻數(shù)

百分比

優(yōu)秀

正正正

a

30%

良好

正正正正正正

30

b

合格

9

15%

不合格

3

5%

合計(jì)

60

60

100%

(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據(jù)以上信息,解答下列問題:

(1)表中的a=_____,b=_____;

(2)請根據(jù)頻數(shù)分布表,畫出相應(yīng)的頻數(shù)分布直方圖;

(3)如果該校八年級共有150名學(xué)生,根據(jù)以上數(shù)據(jù),估計(jì)該校八年級學(xué)生身體素質(zhì)良好及以上的人數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5BD=4,則以下四個(gè)結(jié)論中: ①△BDE是等邊三角形; AEBC ③△ADE的周長是9; ④∠ADE=BDC.其中正確的序號是( 。

A.②③④B.①②④C.①②③D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明

查看答案和解析>>

同步練習(xí)冊答案