【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點(diǎn),已成為世界各國普遍關(guān)注和重點(diǎn)發(fā)展的新興產(chǎn)業(yè).如圖是太陽能電池板支撐架的截面圖,其中線段AB、CD、EF表示支撐角鋼,太陽能電池板緊貼在支撐角鋼AB上且長度均為300cm,AB的傾斜角為30°,BE=CA=50cm,支撐角鋼CD、EF與地面接觸點(diǎn)分別為D、F,CD垂直于地面,FE⊥AB于點(diǎn)E.點(diǎn)A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少.(結(jié)果保留根號(hào))
【答案】CD=75cm;cm.
【解析】
延長BA交FD延長線于點(diǎn)G,作AH⊥DG,根據(jù)題意得出AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30°,先求得AG=2AH=100cm、CG=150cm,繼而由CD=CG可得答案;由EG=AB﹣BE+AG=350根據(jù)EF=EGtan∠EGF可得答案.
如圖所示,延長BA交FD延長線于點(diǎn)G,過點(diǎn)A作AH⊥DG于點(diǎn)H.
由題意知,AB=300cm、BE=AC=50cm、AH=50cm、∠AGH=30°.
在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,則CD=CG=75cm.
∵EG=AB﹣BE+AG=300﹣50+100=350(cm).
在Rt△EFG中,EF=EGtan∠EGF=350tan30°=350×=(cm).
答:支撐角鋼CD的長為75cm,EF的長為cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB分別與兩坐標(biāo)軸交于點(diǎn)A(6,0),B(0,12),點(diǎn)C的坐標(biāo)為(3,0)
(1)求直線AB的解析式;
(2)在線段AB上有一動(dòng)點(diǎn)P.
①過點(diǎn)P分別作x,y軸的垂線,垂足分別為點(diǎn)E,F(xiàn),若矩形OEPF的面積為16,求點(diǎn)P的坐標(biāo).
②連結(jié)CP,是否存在點(diǎn)P,使△ACP與△AOB相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(0,2)、(-1,0)、(2,0).
(1)求直線AB的函數(shù)表達(dá)式;
(2)直線AB上有一點(diǎn)P,使得△PBC的面積等于9,求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)D與A、B、C 點(diǎn)構(gòu)成平行四邊形,直接寫出所有符合條件的點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2 E3E4B3……按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3……在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O= 60°, B1C1∥B2C2∥B3C3……,則正方形A2017B2017 C2017 D2017的邊長是( )
A. ()2016 B. ()2017 C. ()2016 D. ()2017
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線與軸交于點(diǎn)A,頂點(diǎn)為點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于拋物線的對(duì)稱軸對(duì)稱.
(1)求直線BC的解析式;
(2)點(diǎn)D在拋物線上,且點(diǎn)D的橫坐標(biāo)為4.將拋物線在點(diǎn)A,D之間的部分(包含點(diǎn)A,D)記為圖象G,若圖象G向下平移()個(gè)單位后與直線BC只有一個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,D是BC的中點(diǎn),E是AD的中點(diǎn).過點(diǎn)A作AF∥BC交于BE的延長線于點(diǎn)F.
(1)求證:△AEF≌△DEB;
(2)若AC=4,AB=5,求菱形ADCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)點(diǎn)D是拋物線上的一動(dòng)點(diǎn),是否存在點(diǎn)D,使得tan∠DCB=tan∠ACO.若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中有一△BOD,,把 BO 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 90°得OA, 連接AB,作于點(diǎn) C,點(diǎn)B 的坐標(biāo)為(1,3).
(1)求直線AB 的解析式;
(2)若AB 中點(diǎn)為 M,連接 CM,動(dòng)點(diǎn) P、Q 同時(shí)從 C 點(diǎn)出發(fā),點(diǎn) P 沿射線CM 以每秒2個(gè)單位長度的速度運(yùn)動(dòng),點(diǎn)Q沿線段CD 以每秒1個(gè)單位長度的速度向終點(diǎn) D 運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到D 點(diǎn)時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)△PQO 的面積為 S(),運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在(2)的條件下,是否存在這樣的 P 點(diǎn),使得P、O、B為頂點(diǎn)的三角形是直角三角形?若存在,求出對(duì)應(yīng)的t 值和此時(shí)Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com