【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)2個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示是-3,已知A、B是數(shù)軸上的點(diǎn),請(qǐng)參照下圖并思考,完成下列各題.

(1)如果點(diǎn)A表示的數(shù)-1,將點(diǎn)A向右移動(dòng)4個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是____.AB兩點(diǎn)間的距離是__________.

(2)如果點(diǎn)A表示的數(shù)2,將點(diǎn)A向左移動(dòng)6個(gè)單位長(zhǎng)度,再向右移動(dòng)3個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是____.A、B兩點(diǎn)間的距離是____.

(3)如果點(diǎn)A表示的數(shù)m,將點(diǎn)A向左移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示的數(shù)是___.A、B兩點(diǎn)間的距離是______.

【答案】134;(2-1,3;(3m+n+p|n+p|

【解析】

1)根據(jù)數(shù)軸的特點(diǎn)向右移動(dòng)加,AB兩點(diǎn)間的距離等于移動(dòng)的距離求解即可;
2)(3)根據(jù)數(shù)軸的特點(diǎn)向左移動(dòng)減,向右移動(dòng)加,A、B兩點(diǎn)間的距離等于移動(dòng)的距離求解即可.

解:(1)終點(diǎn)B表示:-1+4=3A、B間的距離=3--1=4
2)終點(diǎn)B表示:2-6+3=-1,A、B間的距離是2--1=2+1=3
3)終點(diǎn)B表示:m-n-p,A、B兩點(diǎn)間的距離是|m-n-p-m|=|n+p|

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的邊AB上,連接DE,過點(diǎn)CCFDEF,過點(diǎn)AAGCFDE于點(diǎn)G

1)求證:DCF≌△ADG

2)若點(diǎn)EAB的中點(diǎn),設(shè)DCF=α,求sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,順次連接正方形ABCD四邊的中點(diǎn)得到第一個(gè)正方形A1B1C1D1,再順次連接正方形A1B1C1D1四邊的中點(diǎn)得到第二個(gè)正方形A2B2C2D2…,以此類推,則第2018個(gè)正方形A2018B2018C2018D2018的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的頂點(diǎn)B的坐標(biāo)為(4,2),D是OA的中點(diǎn),OECD交BC于點(diǎn)E,點(diǎn)P從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿射線OE運(yùn)動(dòng).

(1)求直線OE的解析式;

(2)設(shè)以C,P,D,B為頂點(diǎn)的凸四邊形的面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(單位:秒),求S關(guān)于t的函數(shù)解析式,并寫出自變量t的取值范圍;

(3)設(shè)點(diǎn)N為矩形的中心,則在點(diǎn)P運(yùn)動(dòng)過程中,是否存在點(diǎn)P,使以P,C,N為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫出t的值及點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線的平分線相交于,過點(diǎn),交直線于點(diǎn),交直線于點(diǎn),通過上述條件,我們不難發(fā)現(xiàn):;如圖,的平分線的外角平分線相交于,過點(diǎn),交直線于點(diǎn),交直線于點(diǎn)根據(jù)圖所得的結(jié)論,試猜想,之間存在什么關(guān)系?( )

A. B. C. D. 無法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOD=45°,按下列要求畫圖并回答問題:

1)利用三角尺,在直線AB上方畫射線OE,使OEAB

2)利用圓規(guī),分別在射線OAOE上截取線段OM、ON,使OM=ON,連接MN

3)利用量角器,畫∠AOD的平分線OFMN于點(diǎn)F

4)直接寫出∠COF=  °

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),連接CE,CF,OE,OF.

(1)求證:△BCE≌△DCF;

(2)當(dāng)AB與BC滿足什么關(guān)系時(shí),四邊形AEOF是正方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來;

(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤(rùn)為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

閱讀理解:數(shù)軸是學(xué)習(xí)有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點(diǎn)表示,這樣能夠運(yùn)用數(shù)形結(jié)合的方法解決一些問題.例如,兩個(gè)有理數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:

在數(shù)軸上,有理數(shù)31對(duì)應(yīng)的兩點(diǎn)之間的距離為;

在數(shù)軸上,有理數(shù)3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為;

在數(shù)軸上,有理數(shù)-3與-2對(duì)應(yīng)的兩點(diǎn)之間的距離為.

解決問題:如圖所示,已知點(diǎn)表示的數(shù)為-3,點(diǎn)表示的數(shù)為-1,點(diǎn)表示的數(shù)為2.

1)點(diǎn)和點(diǎn)之間的距離為______.

2)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______;當(dāng)時(shí),點(diǎn)和點(diǎn)之間的距離可表示為______.

3)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為,點(diǎn)在點(diǎn)和點(diǎn)之間,點(diǎn)和點(diǎn)之間的距離表示為,點(diǎn)和點(diǎn)之間的距離表示為,求(用含的代數(shù)式表示并進(jìn)行化簡(jiǎn))

4)若數(shù)軸上動(dòng)點(diǎn)表示的數(shù)為-2,將點(diǎn)向右移動(dòng)19個(gè)單位長(zhǎng)度,再向左移動(dòng)23個(gè)單位長(zhǎng)度終點(diǎn)為,那么兩點(diǎn)之間的距離是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案