【題目】如圖1,是一種自卸貨車.如圖2是貨箱的示意圖,貨箱是一個(gè)底邊AB水平的矩形,AB=8米,BC=2米,前端檔板高DE=0.5米,底邊AB離地面的距離為1.3米.卸貨時(shí),貨箱底邊AB的仰角α=37°(如圖3),求此時(shí)檔板最高點(diǎn)E離地面的高度.(精確到0.1米,參考值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
【答案】點(diǎn)E離地面的高度為8.1米
【解析】
延長DA交水平虛線于F,過E作EH⊥BF于H,根據(jù)題意,在Rt△ABF中,求出AF,從而得到EF,結(jié)合Rt△EFH,求出EH即可求得結(jié)果.
解:如圖3所示,延長DA交水平虛線于F,過E作EH⊥BF于H,
∵∠BAF=90°,∠ABF=37°,
∴Rt△ABF中,AF=tan37°×AB≈0.75×8=6(米),
∴EF=AF+AD+DE=8.5,
∵∠EHF=90°=∠BAF,∠BFA=∠EFH,
∴∠E=37°,
∴Rt△EFH中,EH=cos37°×EF≈0.80×8.5=6.8(米),
又∵底邊AB離地面的距離為1.3米,
∴點(diǎn)E離地面的高度為6.8+1.3=8.1(米),
故答案為:8.1米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊的垂直平分線交于點(diǎn),交于點(diǎn),連接.當(dāng)時(shí),則( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年全球超級計(jì)算機(jī)500強(qiáng)名單公布,中國超級計(jì)算機(jī)“神威·太湖之光”和“天河二號”攜手奪得前兩名.已知“神威·太湖之光”的浮點(diǎn)運(yùn)算速度是“天河二號”的2.74倍.這兩種超級計(jì)算機(jī)分別進(jìn)行100億億次浮點(diǎn)運(yùn)算,“神威·太湖之光”的運(yùn)算時(shí)間比“天河二號”少18.75秒,求這兩種超級計(jì)算機(jī)的浮點(diǎn)運(yùn)算速度.設(shè)“天河二號”的浮點(diǎn)運(yùn)算速度為億億次/秒,依題意,可列方程為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,過A,B,D三點(diǎn)的⊙O分別交BC,CD于點(diǎn)E,M,下列結(jié)論:
①DM=CM;②弧AB=弧EM;③⊙O的直徑為2;④AE=AD.
其中正確的結(jié)論有______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( 。
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)在的邊上,以為圓心,為半徑的圓與交于點(diǎn),與交于點(diǎn),并且與邊相切于點(diǎn),連接.已知平分.
(1)求證:;
(2)若,的半徑為3.求陰影部分的面積.(結(jié)果保留和根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:
年級 | 六年級 | 七年級 | 八年級 | 九年級 |
男生 | 250 | z | 254 | 258 |
女生 | x | 244 | y | 252 |
若從全校學(xué)生中任意抽取一名,抽到六年級女生的概率是0.12;若將各年級的男、女學(xué)生人數(shù)制成扇形統(tǒng)計(jì)圖,八年級女生對應(yīng)扇形的圓心角為44.28°.
(1)求x,y,z的值;
(2)求各年級女生的平均數(shù);
(3)如果從八年級隨機(jī)抽取36名學(xué)生參加社會實(shí)踐活動(dòng),求抽到八年級某同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=8,過對角線AC中點(diǎn)O的直線分別交BC、AD邊于點(diǎn)E、F.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng)四邊形AECF是菱形時(shí),求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點(diǎn)A,B分別在y軸、x軸上,OA=2,OB=1,斜邊AC∥x軸.若反比例函數(shù)y(k>0,x>0)的圖象經(jīng)過AC的中點(diǎn)D,則k的值為( )
A.4B.5C.6D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com