【題目】已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,CA=CD,CB=CE,∠ACD=BCE=α,直線AEBD交于點F.

1)如圖1所示,

①求證AE= BD

②求∠AFB (用含α的代數(shù)式表示)

2)將圖1中的△ACD繞點C順時針旋轉(zhuǎn)某個角度(交點F至少在BD、AE中的一條線段上),得到如圖2所示的圖形,若∠AFB= 150°,請直接寫出此時對應(yīng)的α的大小(不用證明)

【答案】1)①見解析,②180° -α230°

【解析】

1)①由∠ACD=∠BCE=α,得到∠ACE=DCB=180°,然后得到△ACEDCB,即可得到AE=BD;

②由①知△ACEDCB,則∠CAF=CDF,利用三角形內(nèi)角和定理,由∠CAF+AFB+B=180°,∠CDF+DCB+B=180°,則∠AFB=DCB=;

2)由∠AFB= 150°,則∠EFB=,由∠ACD=∠BCE,得∠ACE=∠DCB,然后得到△ACE≌△DCB,得到∠AEC=DBC,則∠BCE=EFB=30°.

解:(1)如圖1

①證明:∵∠ACD=BCE=α,

180°ACD=180°BCE

即∠ACE=DCB=180°,

CA=CD,CB=CE,

∴△ACEDCB,

AE=DB;

②∵△ACEDCB,

∴∠CAF=CDF,

由三角形內(nèi)角和定理,得

CAF+AFB+B=180°,∠CDF+DCB+B=180°,

∴∠AFB=DCB=;

2)如圖2

∠AFB= 150°

∴∠EFB=,

∵∠ACD=∠BCE

∴∠ACD+DCO=∠BCE+DCO,

∴∠ACE=DCB

AC=DC,CE=CB,

∴△ACE≌△DCB

∴∠AEC=DBC,

∵∠FOE=COB

∠BCE=EFB=30°,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=-x2+bx+c與x軸交于點A(-1.0)和點B(3,0) ,與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.

(1)求此拋物線的解析式

(2)直接寫出點C和點D的坐標

(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△CDE,求P點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點是線段上的動點(點不重合),分別以為邊向線段的同一側(cè)作正和正.

1)請你判斷有怎樣的數(shù)量關(guān)系?請說明理由;

2)連接,相交于點,設(shè),那么的大小是否會隨點的移動而變化?請說明理由;

3)如圖2,若點固定,將繞點按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于),此時的大小是否發(fā)生變化?(只需直接寫出你的猜想,不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形紙片中,,將紙片折疊,使頂點落在邊上的點處,折痕的一端點在邊.

1)如圖1,當折痕的另一端邊上且時,求的長

2)如圖2,當折痕的另一端邊上且時,

①求證:.②求的長.

3)如圖3,當折痕的另一端邊上,點的對應(yīng)點在長方形內(nèi)部,的距離為2,且時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的對稱軸為,與軸的一個交點在之間,其部分圖象如圖所示,則下列結(jié)論:

;;、是該拋物線上的點,則;為任意實數(shù)).

其中正確結(jié)論的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A90°,BD是∠ABC的平分線,DEBCE,若BC12,則△DEC的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、B以及直線l,AEl,垂足為點E

1)過點BBFl,垂足為點F;

2)在直線l上求作一點C,使CACB;

(要求:第(1)、(2)小題用尺規(guī)作圖,并在圖中標明相應(yīng)字母,保留作圖痕跡,不寫作法.)

3)在所作的圖中,連接CA、CB,若∠ACB90°,求證:△AEC≌△CFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,ACBC,AD平分∠BACBC于點DDE⊥AB于點E,若△BDE的周長是5 cm,則AB的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,正六邊形ABCDEF在直角坐標系的位置如圖所示,A(﹣2,0),點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過5次翻轉(zhuǎn)之后,點B的坐標是______

查看答案和解析>>

同步練習(xí)冊答案