【題目】如圖,在△ABC中,AB=AC,ABC=70°,以B為圓心,任意長為半徑畫弧交AB,BC于點E,F(xiàn),再分別以點E,F(xiàn)為圓心、以大于EF長為半徑畫弧,兩弧交于點P,作射線BPAC于點D,則∠BDC為(  )度.

A. 65 B. 75 C. 80 D. 85

【答案】B

【解析】

根據(jù)等腰三角形的性質(zhì)求得∠C的度數(shù),再由作圖的步驟可知BD是∠ABC的平分線,求得∠DBC的度數(shù),根據(jù)三角形的內(nèi)角和定理即可求解

∵在△ABC中,AB=AC,∠ABC=70°,

∴∠C=∠ABC=70°.

∵BD是∠ABC的平分線,

∴∠DBC=∠ABC=35°,

∴∠ADB=180°-(∠C+∠DBC)=180°-(70°+35°)=75°.

故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(4,0),且當x=﹣2和x=5時二次函數(shù)的函數(shù)值y相等.

(1)求實數(shù)a、b的值;
(2)如圖1,動點E、F同時從A點出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒 個單位長度的速度沿射線AC方向運動.當點E停止運動時,點F隨之停止運動.設運動時間為t秒.連接EF,將△AEF沿EF翻折,使點A落在點D處,得到△DEF.
①是否存在某一時刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由.
②設△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:

(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的5個主題進行了抽樣調(diào)查(每位同學只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這5個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點.
(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的兩外角平分線交于點P,易證∠P=90°- A;ABC的兩內(nèi)角的平分線交于點Q,易證∠BQC=90°+A;那么△ABC的內(nèi)角平分線BM與外角平分CM的夾角∠M=_____A.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高2米的影子CE,而當光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F(xiàn),C在一條直線上).
(參考數(shù)據(jù):sin22°≈ ,cos22° ,tan22
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE,動點P從點B出發(fā),以每秒1個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為__________秒時.△ABP△DCE全等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為踐行黨的群眾路線,六盤水市教育局開展了大量的教育教學實踐活動,如圖是其中一次“測量旗桿高度”的活動場景抽象出的平面幾何圖形.
活動中測得的數(shù)據(jù)如下:
①小明的身高DC=1.5m
②小明的影長CE=1.7cm
③小明的腳到旗桿底部的距離BC=9cm
④旗桿的影長BF=7.6m
⑤從D點看A點的仰角為30°
請選擇你需要的數(shù)據(jù),求出旗桿的高度.(計算結(jié)果保留到0.1,參考數(shù)據(jù) ≈1.414. ≈1.732)

查看答案和解析>>

同步練習冊答案