反比例函數(shù)y=與一次函數(shù)y=-x+2的圖象交于A、B兩點,

(1)求A、B兩點的坐標;

(2)求△AOB的面積.

答案:
解析:

  (1)解方程組經(jīng)檢驗它們都是原方程組的解.

  ∴兩交點坐標分別為A(4,-2),B(24)

  (2)直線y=-x2x軸于點C(2,0)

  ∴SAOBSAOCSBOC

      =×2×2×2×46


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:浙江省杭州市蕭山臨浦片2012屆九年級12月月考數(shù)學試題 題型:044

如圖,在平面直角坐標系中,直線y=-2x+2與x軸、y軸分別相交于點A,B,四邊形ABCD是正方形,反比例函數(shù)y=在第一象限的圖像經(jīng)過點D.

(1)求D點的坐標,以及反比例函數(shù)的解析式;

(2)若K是雙曲線上第一象限內(nèi)的任意點,連接AK、BK,設(shè)四邊形AOBK的面積為S;試推斷當S達到最大值或最小值時,相應(yīng)的K點橫坐標;并直接寫出S的取值范圍.

(3)試探究:將正方形ABCD沿左右(或上下)一次平移若干個單位后,點C的對應(yīng)點恰好落在雙曲線上的方法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):信息一:如果單獨投資A種產(chǎn)品,所獲利潤y(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:

x(萬元)

1

2

2.5

3

5

y(萬元)

0.4

0.8

1

1.2

2

信息二:如果單獨投資B種產(chǎn)品,則所獲利潤y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.

(1)求出y與x的函數(shù)關(guān)系式.

(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示y與x之間的關(guān)系,并求出y與x的函數(shù)關(guān)系式.

(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)今年我國多個省市遭受嚴重干旱,受旱災(zāi)的影響,4月份,我市某蔬菜價格呈上升趨勢,其前四周每周的平均銷售價格變化如下表:

周數(shù)x

1

2

3

4

價格y(元/千克)

2

2.2

2.4

2.6

1.(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識直接寫出4月份yx 的函數(shù)關(guān)系式;

2.(2)進入5月,由于本地蔬菜的上市,此種蔬菜的平均銷售價格y(元/千克)從5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y與周數(shù)x的變化情況滿足二次函數(shù)y=- x2bxc. ,請求出5月份yx的函數(shù)關(guān)系式

3.(3)若4月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為mx+1.2,5月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為mx+2.試問4月份與5月份分別在哪一周銷售此種蔬菜一千克的利潤最大?且最大利潤分別是多少?

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某企業(yè)信息部進行市場調(diào)研發(fā)現(xiàn):信息一:如果單獨投資A種產(chǎn)品,所獲利潤y(萬元)與投資金額x(萬元)之間存在某種關(guān)系的部分對應(yīng)值如下表:
x(萬元)
1
2
2.5
3
5
y(萬元)
0.4
0.8
1
1.2
2
信息二:如果單獨投資B種產(chǎn)品,則所獲利潤y(萬元)與投資金額x(萬元)之間存在二次函數(shù)關(guān)系:y=ax2+bx,且投資2萬元時獲利潤2.4萬元,當投資4萬元時,可獲利潤3.2萬元.
(1)求出y與x的函數(shù)關(guān)系式.
(2)從所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)中確定哪種函數(shù)能表示y與x之間的關(guān)系,并求出y與x的函數(shù)關(guān)系式.
(3)如果企業(yè)同時對A、B兩種產(chǎn)品共投資15萬元,請設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(12分)今年我國多個省市遭受嚴重干旱,受旱災(zāi)的影響,4月份,我市某蔬菜價格呈上升趨勢,其前四周每周的平均銷售價格變化如下表:
周數(shù)x
1
2
3
4
價格y(元/千克)
2
2.2
2.4
2.6
【小題1】(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識直接寫出4月份yx 的函數(shù)關(guān)系式;
【小題2】(2)進入5月,由于本地蔬菜的上市,此種蔬菜的平均銷售價格y(元/千克)從5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y與周數(shù)x的變化情況滿足二次函數(shù)y=- x2bxc. ,請求出5月份yx的函數(shù)關(guān)系式
【小題3】(3)若4月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為mx+1.2,5月份此種蔬菜的進價m(元/千克)與周數(shù)x所滿足的函數(shù)關(guān)系為mx+2.試問4月份與5月份分別在哪一周銷售此種蔬菜一千克的利潤最大?且最大利潤分別是多少?

查看答案和解析>>

同步練習冊答案