【題目】如圖,在RtABC中,∠A=90°ADBC,垂足為D.給出下列四個結論:①sinα=sinB;②sinα=cosβ;③;④.其中正確的結論有____________

【答案】①②③④

【解析】

本題主要考查銳角三角函數(shù)的定義,根據(jù)∠A90°,ADBC,可得∠α=∠B,∠β=∠C,再利用銳角三角函數(shù)的定義及比例的性質可列式進行逐項判斷.

解:∵∠A90°,ADBC,

∴∠α+∠β90°,∠B+∠β90°,∠B+∠C90°,

∴∠α=∠B,∠β=∠C,

sinαsinB,故①正確,

∵∠α+∠β90°∴sinα=cosβ,故②正確;

tanB=,tanα=

,正確;

cosB=, cosB=

正確;

故填①②③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C是以AB為直徑的半圓O上一點,連結ACBC,分別以AC、BC為直徑作半圓,其中M,N分別是ACBC為直徑作半圓弧的中點,,的中點分別是PQ.若MP+NQ7,AC+BC26,則AB的長是( 。

A.17B.18C.19D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù) y=kx+b 的圖像如圖所示,則當kx+b>0 時,x 的取值范圍為___________.

【答案】x>1

【解析】分析:題目要求 kx+b>0,即一次函數(shù)的圖像在x 軸上方時,觀察圖象即可得x的取值范圍.

詳解:

∵kx+b>0,

一次函數(shù)的圖像在x 軸上方時,

∴x的取值范圍為:x>1.

故答案為:x>1.

點睛:本題考查了一次函數(shù)與一元一次不等式的關系,主要考查學生的觀察視圖能力.

型】填空
束】
16

【題目】菱形ABCD中, ,其周長為32,則菱形面積為____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,且過點(﹣30),(10),下列說法錯誤的是(  )

A.2ab0

B.4a2b+c0

C.(﹣4y1),(2y2)是拋物線上兩點,則y1y2

D.y0時,﹣3x1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且EDF=45°.將DAE繞點D逆時針旋轉90°,得到DCM.

1)求證:EF=FM

2)當AE=1時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某小區(qū)青年對高鐵、掃碼支付網(wǎng)購共享單車新四大發(fā)明的喜愛程度,隨機調(diào)查該小區(qū)一部分青年(每名青年只能選一個),并將調(diào)查結果制成如圖所示統(tǒng)計表與條形統(tǒng)計圖.

青年最喜愛的新四大發(fā)明人數(shù)統(tǒng)計表

節(jié)目

人數(shù)(名)

百分比

共享單車

5

掃碼支付

15

網(wǎng)購

高鐵

10

青年最喜愛的新四大發(fā)明人數(shù)條形統(tǒng)計圖

1)計算的值

2)請補全條形統(tǒng)計圖;

3)在被調(diào)查喜愛共享單車青年中,小明一周內(nèi)使用共享單車的次數(shù)分別為:1,3,5,12,,若整數(shù)是這組數(shù)據(jù)的中位數(shù),直接寫出該組數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若b是正數(shù),直線ly=by軸交于點A;直線ay=xby軸交于點B;拋物線Ly=x2+bx的頂點為C,且Lx軸右交點為D

1)若AB=8,求b的值,并求此時L的對稱軸與a的交點坐標;

2)當點Cl下方時,求點Cl距離的最大值;

3)設x00,點(x0y1),(x0y2),(x0y3)分別在l,aL上,且y3y1,y2的平均數(shù),求點(x00)與點D間的距離;

4)在La所圍成的封閉圖形的邊界上,把橫、縱坐標都是整數(shù)的點稱為“美點”,分別直接寫出b=2019b=2019.5時“美點”的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+2x+ca0)與x軸交于點A和點B(點A在原點的左側,點B在原點的右側),與y軸交于點COBOC3

1)求該拋物線的函數(shù)解析式;

2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD,ODBC于點F,當SCOFSCDF32時,求點D的坐標.

3)如圖2,點E的坐標為(0,),在拋物線上是否存在點P,使∠OBP2OBE?若存在,請直接寫出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)愛因斯坦的相對論可知,任何物體的運動速度不能超過光速(3×105km/s),因為一個物體達到光速需要無窮多的能量,并且時光會倒流,這在現(xiàn)實中是不可能的.但我們可讓一個虛擬物超光速運動,例如:直線l,m表示兩條木棒相交成的銳角的度數(shù)為10°,它們分別以與自身垂直的方向向兩側平移時,它們的交點A也隨著移動(如圖箭頭所示),如果兩條直線的移動速度都是光速的0.2倍,則交點A的移動速度是光速的_____倍.(結果保留兩個有效數(shù)字).

查看答案和解析>>

同步練習冊答案