【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,點D在BC邊上,⊙D經過點A和點B且與BC邊相交于點E.
(1)求證:AC是⊙D的切線;
(2)若CE=2,求⊙D的半徑.
【答案】(1)見詳解;(2)2.
【解析】
(1)連接AD,根據(jù)等腰三角形的性質得到∠B=∠C=30°,∠BAD=∠B=30°,求得∠ADC=60°,根據(jù)三角形的內角和得到∠DAC=180°﹣60°﹣30°=90°,于是得到AC是⊙D的切線;
(2)連接AE,推出△ADE是等邊三角形,得到AE=DE,∠AED=60°,求得∠EAC=∠AED﹣∠C=30°,得到AE=CE=2,于是得到結論.
(1)證明:連接AD,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵AD=BD,
∴∠BAD=∠B=30°,
∴∠ADC=60°,
∴∠DAC=180°﹣60°﹣30°=90°,
∴AC是⊙D的切線;
(2)解:連接AE,
∵AD=DE,∠ADE=60°,
∴△ADE是等邊三角形,
∴AE=DE,∠AED=60°,
∴∠EAC=∠AED﹣∠C=30°,
∴∠EAC=∠C,
∴AE=CE=2,
∴⊙D的半徑AD=2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,∠BAD=60°,點E在邊AD上,連接BE,在BE上取點F,連接AF并延長交BD于H,且∠AFE=60°,過C作CG∥BD,直線CG、AF交于G.
(1)求證:∠FAE=∠EBA;
(2)求證:AH=BE;
(3)若AE=3,BH=5,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校開展課外體育活動,決定開展:籃球、乒乓球、踢毽子、跑步四種活動項目.為了解學生最喜歡哪一種活動項目(每人只選取一種).隨機抽取了部分學生進行調查,并將調查結果繪成如下統(tǒng)計圖,請你結合圖中信息解答下列問題.
(1)樣本中最喜歡籃球項目的人數(shù)所占的百分比為 ,其所在扇形統(tǒng)計圖中對應的圓心角度數(shù)是 度;
(2)請把條形統(tǒng)計圖補充完整;
(3)若該校有學生1000人,請根據(jù)樣本估計全校最喜歡踢毽子的學生人數(shù)約是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=-x(x-2)(0≤x≤2)記為C1 ,它與x軸交于兩點O,A;將C1繞點A旋轉180°得到C2 , 交x軸于A1;將C2繞點A1旋轉180°得到C3 , 交x軸于點A2 . .....如此進行下去,直至得到C2018 , 若點P(4035,m)在第2018段拋物線上,則m的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,拋物線的頂點為M,平行于x軸的直線與該拋物線交于點A,B(點A在點B左側),根據(jù)對稱性△AMB恒為等腰三角形,我們規(guī)定:當△AMB為直角三角形時,就稱△AMB為該拋物線的“完美三角形”.
(1)①如圖2,求出拋物線y=x2的“完美三角形”斜邊AB的長;
②請寫出一個拋物線的解析式,使它的完美三角形與y=x2+1的“完美三角形”全等;
(2)若拋物線y=ax2+4的“完美三角形”的斜邊長為4,求a的值;
(3)若拋物線y=mx2+2x+n5的“完美三角形”斜邊長為n,且y=mx2+2x+n5的最大值為1,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=4,點P是BC邊上的一個動點(點P不與點B,C重合),現(xiàn)將△ABP沿直線AP折疊,使點B落到點B′處;作∠B′PC的角平分線交CD于點E.設BP=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為的正方形ABCD中,點E是BC邊上一點,點F是CD邊上一點,且BF⊥AE于點G,將△ABE繞頂點A逆時針旋轉得△AB/E/,使得點B/、E/恰好分別落在AE、CD上,AE/交BF于點H,則四邊形B/E/HG的面積為_______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com