【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)y=﹣+bx+c的圖象經(jīng)過B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A.
(1)求二次函數(shù)的表達(dá)式;
(2)如圖1,點(diǎn)D是拋物線第四象限上的一動(dòng)點(diǎn),連接DC,DB,當(dāng)S△DCB=S△ABC時(shí),求點(diǎn)D坐標(biāo);
(3)如圖2,在(2)的條件下,點(diǎn)Q在CA的延長(zhǎng)線上,連接DQ,AD,過點(diǎn)Q作QP∥y軸,交拋物線于P,若∠AQD=∠ACO+∠ADC,請(qǐng)求出PQ的長(zhǎng).
【答案】(1);(2);(3)6
【解析】
(1)先求出B、C的坐標(biāo),然后代入二次函數(shù)的解析式,解方程組即可;
(2)過D作DG⊥x軸于G,過C作CF⊥DG于F,過B作BE⊥CF于E.設(shè)D(x,y),則x>0,y<0.求出S△ABC.根據(jù)S△CBD=S△CDF-S△CEB-S梯形EBDF解方程解得到x的值,從而得到D的坐標(biāo);
(3)連接AD,過D作DM⊥x軸于M.先求出直線CD的解析式為y=-x+2,得到CO=OR=2,則∠ORC=45°.再證明∠AQD=45°.通過勾股定理的逆定理得到AC2+AD2= DC2,即有∠CAD=90°,從而有△AQD是等腰直角三角形,由等腰三角形的性質(zhì)得到AQ=AD.通過證明△QAN≌△ADM,得到NA,QN的長(zhǎng),進(jìn)而得到ON=4,即可得到N(-4,0),則P點(diǎn)橫坐標(biāo)為x=-4,代入二次函數(shù)即可得到y的值,從而得到結(jié)論.
(1)在中,令y=0,解得:x=4,∴B(4,0),令x=0,得:y=2,∴C(0,2).把B(4,0),C(0,2)代入中,得:,解得:,∴二次函數(shù)的表達(dá)式為:.
(2)過D作DG⊥x軸于G,過C作CF⊥DG于F,過B作BE⊥CF于E.設(shè)D(x,y).
∵D在第四象限,∴x>0,y<0.
∵B(4,0),C(0,2),∴CE=OB=4,CO=BE=FG=2,EF=BG=x-4,DF=DG+FG=2-y,S△ABC=AB×OC=×(4+1)×2=5.
S△CBD=S△CDF-S△CEB-S梯形EBDF=,化簡(jiǎn)得:x+2y=-1.
∵D(x,y)在二次函數(shù)上,∴,化簡(jiǎn)得:,∴(x-5)(x+1)=0,∴x=5或x=-1(舍去).
當(dāng)x=5時(shí),y==-3,∴D(5,-3).
(3)如圖,連接AD,過D作DM⊥x軸于M.設(shè)直線CD的解析式為y=kx+b,把C(0,2),D(5,-3)代入得到:,解得:,∴直線CD的解析式為y=-x+2,令y=0,解得:x=2,∴R(2,0),∴CO=OR=2,∴∠ORC=45°.
∵∠ACO+∠CAO=90°,∠CAO+∠OAD=90°,∴∠ACO=∠OAD,∴∠ACO+∠ADC=∠OAD+∠ADC=∠ARC=45°,∴∠AQD=45°.
∵AC2=12+22=5,AD2=(5+1)2+32=45,DC2=52+(2+3)2=50,∴AC2+AD2=5+45=50= DC2,∴∠CAD=90°,∴∠QAD=90°.
∵∠AQD=45°,∴△AQD是等腰直角三角形,∴AQ=AD.
∵∠QAD=90°,∴∠NAQ+∠DAM=90°.
∵∠NAQ+∠AQN=90°,∴∠AQN=∠MAD.在△QAN和△ADM中,∵∠AQN=∠MAD,∠QNA=∠AMD=90°,AQ=AD,∴△QAN≌△ADM,∴NA=DM=3,QN=AM=6,∴ON=4,∴N(-4,0).設(shè)P(x,y).
∵QP∥y軸,∴P點(diǎn)橫坐標(biāo)為x=-4,∴y==-12,∴PN=12,∴PQ=PN-QN=12-6=6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) O 是△ABC 的邊 AB 上一點(diǎn),以 OB 為半徑的⊙O 交 BC 于點(diǎn) D,過點(diǎn) D 的切線交 AC 于點(diǎn) E,且 DE⊥AC.
(1)證明:AB=AC;
(2)設(shè) AB=cm,BC=2cm,當(dāng)點(diǎn) O 在 AB 上移動(dòng)到使⊙O 與邊 AC 所在直線相切時(shí), 求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B(4,0),C
(0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動(dòng)點(diǎn).
(1) 求這個(gè)二次函數(shù)的解析式;
(2) 是否存在點(diǎn) P,使△POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3) 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 S△DBC=S△ABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,點(diǎn)在所在的直線上,點(diǎn)在射線上,且,連接.
(1)如圖①,若,,求的度數(shù);
(2)如圖②,若,,求的度數(shù);
(3)當(dāng)點(diǎn)在直線上(不與點(diǎn)、重合)運(yùn)動(dòng)時(shí),試探究與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點(diǎn)為D點(diǎn).
(1)求此拋物線解析式;
(2)如圖1,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在對(duì)稱軸右側(cè),若△ADP面積為3,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,PA交對(duì)稱軸于點(diǎn)E,如圖2,過E點(diǎn)的任一條直線與拋物線交于M,N兩點(diǎn),直線MD交直線y=﹣3于點(diǎn)F,連結(jié)NF,求證:NF∥y軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,點(diǎn)為的中點(diǎn),在邊上取點(diǎn),使.繞點(diǎn)旋轉(zhuǎn),得到(點(diǎn)、分別與點(diǎn)、對(duì)應(yīng)),當(dāng)時(shí),則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)完成下列任務(wù):
(1)將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得到△A1B1C;
(2)求線段AC旋轉(zhuǎn)到A1C的過程中,所掃過的圖形的面積;
(3)以點(diǎn)O為位似中心,位似比為2,將△A1B1C放大得到△A2B2C2(在網(wǎng)格之內(nèi)畫圖).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,頂點(diǎn)為M的拋物線y=ax2+bx(a>0),經(jīng)過點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=OB=2,∠AOB=120°.
(1)求這條拋物線的表達(dá)式;
(2)連接OM,求∠AOM的大小;
(3)如果點(diǎn)C在x軸上,且△ABC與△AOM相似,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=a(x+2)2﹣3與y2=(x﹣3)2+1交于點(diǎn)A(1,3),過點(diǎn)A作x軸的平行線,分別交兩條拋物線于點(diǎn)B,C.則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);
②a=1;
③當(dāng)x=0時(shí),y2﹣y1=4
④2AB=3AC.
其中正確結(jié)論是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com