分析 (1)結(jié)論:△PAD是等腰直角三角形.只要證明△BAP≌△CAD,即可解決問題.
(2))由△BAP≌△CAD,推出PB=CD=3,∠APB=∠ADC=135°,由△PAD是等腰直角三角形,推出∠ADP=45°,∠PDC=135°-∠ADP=90°,由AP=AD=1,推出PD2=AP2+AD2=2,在Rt△PDC中,根據(jù)PC=$\sqrt{C{D}^{2}+P{D}^{2}}$計(jì)算即可.
解答 解:(1)結(jié)論:△PAD是等腰直角三角形.
理由:∵∠CAB=∠PAD=90°,
∴∠BAP=∠CAD,
在△BAP和△CAD中,
$\left\{\begin{array}{l}{BA=CA}\\{∠BAP=∠CAD}\\{AP=AD}\end{array}\right.$,
∴△BAP≌△CAD,
∴PA=AD,
∵∠PAD=90°,
∴△PAD是等腰直角三角形.
(2)∵△BAP≌△CAD,
∴PB=CD=3,∠APB=∠ADC=135°,
∵△PAD是等腰直角三角形,
∴∠ADP=45°,∠PDC=135°-∠ADP=90°,
∵AP=AD=1,
∴PD2=AP2+AD2=2,
在Rt△PDC中,PC=$\sqrt{C{D}^{2}+P{D}^{2}}$=$\sqrt{9+2}$=$\sqrt{11}$
點(diǎn)評(píng) 本題考查旋轉(zhuǎn)的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是正確尋找全等三角形,證明∠CDP=90°是本題的突破點(diǎn),屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 由∠1=∠F得DF∥AE | B. | 由∠2=∠F得AD∥EF | C. | 由∠1=∠A得DF∥AE | D. | 由∠2=∠A得DF∥AE |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com