已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點A,C的坐標(biāo)分別為A(-3,0)精英家教網(wǎng),C(1,0),tan∠BAC=
34

(1)求過點A,B的直線的函數(shù)表達式;
(2)在x軸上找一點D,連接DB,使得△ADB與△ABC相似(不包括全等),并求點D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動點,連接PQ,設(shè)AP=DQ=m,問是否存在這樣的m,使得△APQ與△ADB相似?如存在,請求出m的值;如不存在,請說明理由.
分析:(1)設(shè)過點A,B的直線的函數(shù)表達式為y=kx+b,利用待定系數(shù)法可解得k=
3
4
b=
9
4
,即直線AB的函數(shù)表達式為y=
3
4
x+
9
4

(2)過點B作BD⊥AB,交x軸于點D,D點為所求.又tan∠ADB=tan∠ABC=
4
3
,CD=BC÷tan∠ADB=3÷
4
3
=
9
4
,可求OD=OC+CD=
13
4
,所以D(
13
4
,0);
(3)在Rt△ABC中,由勾股定理得AB=5,當(dāng)PQ∥BD時,△APQ∽△ABD,解得m=
25
9
;當(dāng)PQ⊥AD時,△APQ∽△ADB,則解得m=
125
36
解答:解:(1)∵點A(-3,0),C(1,0),
∴AC=4,BC=tan∠BAC×AC=
3
4
×4=3,B點坐標(biāo)為(1,3),
設(shè)過點A,B的直線的函數(shù)表達式為y=kx+b,
0=k×(-3)+b
3=k+b
k=
3
4
b=
9
4
,
∴直線AB的函數(shù)表達式為y=
3
4
x+
9
4


(2)如圖,過點B作BD⊥AB,交x軸于點D,精英家教網(wǎng)
在Rt△ABC和Rt△ADB中,
∵∠BAC=∠DAB,
∴Rt△ABC∽Rt△ADB,
∴D點為所求,
又tan∠ADB=tan∠ABC=
4
3
,
∴CD=BC÷tan∠ADB=3÷
4
3
=
9
4
,
∴OD=OC+CD=
13
4
,∴D(
13
4
,0);精英家教網(wǎng)

(3)這樣的m存在.
在Rt△ABC中,由勾股定理得AB=5,
如圖1,
當(dāng)PQ∥BD時,△APQ∽△ABD,則
m
5
=
3+
13
4
-m
3+
13
4

解得m=
25
9
,
如圖2,
當(dāng)PQ⊥AD時,△APQ∽△ADB,
m
3+
13
4
=
3+
13
4
-m
5
,精英家教網(wǎng)
解得m=
125
36
點評:主要考查了函數(shù)和幾何圖形的綜合運用.解題的關(guān)鍵是會靈活的運用函數(shù)圖象的性質(zhì)和交點的意義求出相應(yīng)的線段的長度或表示線段的長度,再結(jié)合具體圖形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,直y=
3
2
x+b
與雙曲線y=
16
x
相交于第一象限內(nèi)的點A,AB、AC分別垂直于x軸、y軸,垂足分別為B、C,已知四邊形ABCD是正方形,求直線所對應(yīng)的一次函數(shù)的解析式以及它與x軸的交點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶
8,9,10,11或12
8,9,10,11或12
個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標(biāo)為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運動 ,交OA于點D,交OC于點M,交BC于點E. 當(dāng)點P到達點B時,直線也隨即停止運動.

(1)求出點C的坐標(biāo);
(2)在這一運動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個運動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)模擬試卷(十一)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,原點O處有一乒乓球發(fā)射器向空中發(fā)射乒乓球,乒乓球飛行路線是一條拋物線,在地面上落點落在X軸上為點B.有人在線段OB上點C(靠點B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓乒乓球落入桶內(nèi).已知OB=4米,OC=3米,乒乓球飛行最大高度MN=5米,圓柱形桶的直徑為0.5,高為0.3米(乒乓球的體積和圓柱形桶的厚度忽略不計).
(1)求乒乓球飛行路線拋物線的解析式;
(2)如果豎直擺放5個圓柱形桶時,乒乓球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶______個時,乒乓球可以落入桶內(nèi)?(直接寫出滿足條件的一個答案)

查看答案和解析>>

同步練習(xí)冊答案