【題目】小華用兩塊不全等的等腰直角三角形的三角板擺放圖形.

(1)如圖所示兩個(gè)等腰直角ABC,DBE,兩直角邊交于點(diǎn)F,連接BF、AD,求證:BF=AD;

(2)如果小華將兩塊三角板ABC,DBE如圖所示擺放,使D、B、C三點(diǎn)在一條直線上,AC、DE的延長(zhǎng)線相交于點(diǎn)F,過(guò)點(diǎn)F作FGBC,交直線AE于點(diǎn)G,連接AD,F(xiàn)B,求證:FG=AC+DC;

(3)在(2)的條件下,若AG=7,DC=5,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合,并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于P、Q兩點(diǎn)(如圖),若PG=2,求線段FQ的長(zhǎng).

【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、證明過(guò)程見(jiàn)解析;(3)、.

【解析】

試題分析:(1)、根據(jù)ABC,DBE是等腰直角三角形得到CDF也是等腰直角三角形,則CD=CF,根據(jù)BCF=ACD=90°,AC=BC得到BCF≌△ACD,從而得到BF=AD;(2)、根據(jù)ABC、BDE是等腰直角三角形得出ABC=BAC=BDE=45°即FGCD,G=45°,則AF=FG,根據(jù)CDCF,CDF=45°得出CD=CF,則得出答案;(3)、過(guò)點(diǎn)B作BHFG垂足為H,過(guò)點(diǎn)P作PKAG于點(diǎn)K,根據(jù)FGBC,C、D、B在一條直線上得出AFG和DCF為等腰直角三角形,根據(jù)勾股定理得出AF、FG和FD的長(zhǎng)度,然后根據(jù)題意求出BQH和BPK相似,然后求出FQ的長(zhǎng)度.

試題解析:(1)、∵△ABC,DBE是等腰直角三角形, ∴△CDF也是等腰直角三角形;

CD=CF, ∵∠BCF=ACD=90°,AC=BC ∴△BCF≌△ACD, BF=AD;

(2)、∵△ABC、BDE是等腰直角三角形 ∴∠ABC=BAC=BDE=45°FGCD, ∴∠G=45°,

AF=FG; CDCF,CDF=45°, CD=CF, AF=AC+CF, AF=AC+DC. FG=AC+DC.

(3)、過(guò)點(diǎn)B作BHFG垂足為H,過(guò)點(diǎn)P作PKAG于點(diǎn)K,

FGBC,C、D、B在一條直線上, 可證AFG、DCF是等腰直角三角形, AG=,CD=5,

根據(jù)勾股定理得:AF=FG=7,F(xiàn)D=, AC=BC=2, BD=3; BHFG,

BHCF,BHF=90°, FGBC, 四邊形CFHB是矩形, BH=5,F(xiàn)H=2;

FGBC, ∴∠G=45° HG=BH=5,BG= PKAG,PG=2, PK=KG=,

BK==4 ∵∠PBQ=45°,HGB=45°, ∴∠GBH=45° ∴∠1=2;

PKAG,BHFG, ∴∠BHQ=BKP=90°, ∴△BQH∽△BPK,

QH=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的是(  )

A.菱形的對(duì)角線相等

B.平行四邊形既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形

C.正方形的對(duì)角線相等且互相垂直

D.矩形的對(duì)角線互相垂直

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種細(xì)胞的直徑是0.000067厘米,將0.000067用科學(xué)記數(shù)法表示為( 。

A. 0.67×10-5 B. 67×10-6 C. 6.7×10-6 D. 6.7×10-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】華宇公司獲得授權(quán)生產(chǎn)某種奧運(yùn)紀(jì)念品,經(jīng)市場(chǎng)調(diào)查分析,該紀(jì)念品的銷(xiāo)售量(萬(wàn)件)與紀(jì)念品的價(jià)格(元/件)之間的函數(shù)圖象如圖所示,該公司紀(jì)念品的生產(chǎn)數(shù)量(萬(wàn)件)與紀(jì)念品的價(jià)格(元/件)近似滿足函數(shù)關(guān)系式 ,若每件紀(jì)念品的價(jià)格不小于20元,且不大于40元.

請(qǐng)解答下列問(wèn)題:

(1)求的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

(2)當(dāng)價(jià)格為何值時(shí),使得紀(jì)念品產(chǎn)銷(xiāo)平衡(生產(chǎn)量與銷(xiāo)售量相等);

(3)當(dāng)生產(chǎn)量低于銷(xiāo)售量時(shí),政府常通過(guò)向公司補(bǔ)貼紀(jì)念品的價(jià)格差來(lái)提高生產(chǎn)量,促成新的產(chǎn)銷(xiāo)平衡.若要使新的產(chǎn)銷(xiāo)平衡時(shí)銷(xiāo)售量達(dá)到46萬(wàn)件,政府應(yīng)對(duì)該紀(jì)念品每件補(bǔ)貼多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)多邊形內(nèi)角和為900°,則這個(gè)多邊形是____邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個(gè)等級(jí).第1級(jí)(最低級(jí))產(chǎn)品每天能生產(chǎn)95件,每件利潤(rùn)6元.已知每提高一個(gè)級(jí)別,每件利潤(rùn)增加2元,但每天產(chǎn)量減少5件.

(1)若生產(chǎn)第3級(jí)產(chǎn)品,則每天產(chǎn)量為 件,每件利潤(rùn)為 元;

(2)若生產(chǎn)第x級(jí)產(chǎn)品一天的總利潤(rùn)為y元(其中x為正整數(shù),且1x10),求出y關(guān)于x的函數(shù)解析式;

(3)若生產(chǎn)第x級(jí)的產(chǎn)品一天的總利潤(rùn)為1120元,求該產(chǎn)品的質(zhì)量等級(jí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一空水池現(xiàn)需注滿水水池深 4.9m,現(xiàn)以不變的流量注水數(shù)據(jù)如下表所示:

注水時(shí)間 t(h)

0.5

1

1.5

2

水的深度 h(m)

0.7

1.4

2.1

2.8

(1)上表反映的變量關(guān)系中,注水時(shí)間 t _____,水的深度 h _____

(2)注滿水池需要的時(shí)間是_____h.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“同位角相等,兩直線平行”的逆命題是:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)(1)班現(xiàn)要從A、B兩位男生和C、D兩位女生中,選派學(xué)生代表本班參加全校中華好詩(shī)詞大賽.

1)如果選派一位學(xué)生代表參賽,求選派到的代表是A的概率;

2)如果選派兩位學(xué)生代表參賽,求恰好選派一男一女兩位同學(xué)參賽的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案