如圖,動點M、N分別在直線AB與CD上,且AB∥CD,∠BMN與∠MND的角平分線相交于點P,若以MN為直徑作⊙O,則點P與⊙O的位置關系是( )

A.點P在⊙O外
B.點P在⊙O內
C.點P在⊙O上
D.以上都有可能
【答案】分析:先根據(jù)平行線的性質得出∠BMN+∠MND=180°,再由角平分線的性質可得出∠PMN=∠BMN,∠PNM=∠MND,故可知∠PMN+∠PNM=90°,由三角形的內角和是180°得出∠MPN=90°,再由直角三角形斜邊上的中線等于斜邊的一半得出OP=MN,進而根據(jù)點與圓的位置關系即可得出結論.
解答:解:∵AB∥CD,
∴∠BMN+∠MND=180°,
∵∠BMN與∠MND的平分線相交于點P,
∴∠PMN=∠BMN,∠PNM=∠MND,
∴∠PMN+∠PNM=90°,
∴∠MPN=180°-(∠PMN+∠PNM)=180°-90°=90°,
∴以MN為直徑作⊙O時,OP=MN=⊙O的半徑,
∴點P在⊙O上.
故選C.
點評:本題考查的是平行線的性質、角平分線的定義、三角形內角和定理、直角三角形的性質及點與圓的位置關系,根據(jù)條件得到OP=MN是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•晉江市質檢)如圖,動點M、N分別在直線AB與CD上,且AB∥CD,∠BMN與∠MND的角平分線相交于點P,若以MN為直徑作⊙O,則點P與⊙O的位置關系是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1=a(x-m)2與y2關于y軸對稱,頂點分別為B、A,y1與y軸的交點為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿足的關系式;
(2)如圖,動點Q、M分別在y1和y2上,N、P在x軸上,構成矩形MNPQ,當a為1時,請問:
①Q點坐標是多少時,矩形MNPQ的周長最短?
②若E為MQ與y軸的交點,是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請直接寫出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年浙江省杭州市江干區(qū)九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,拋物線與y2關于y軸對稱,頂點分別為B、A,y1與y軸的交點為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿足的關系式;
(2)如圖,動點Q、M分別在y1和y2上,N、P在x軸上,構成矩形MNPQ,當a為1時,請問:
①Q點坐標是多少時,矩形MNPQ的周長最短?
②若E為MQ與y軸的交點,是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請直接寫出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年浙江省杭州市中考數(shù)學模擬試卷(21)(解析版) 題型:解答題

如圖,拋物線與y2關于y軸對稱,頂點分別為B、A,y1與y軸的交點為C.若由A,B,C組成的三角形中,tan∠ABC=2.求:
(1)a與m滿足的關系式;
(2)如圖,動點Q、M分別在y1和y2上,N、P在x軸上,構成矩形MNPQ,當a為1時,請問:
①Q點坐標是多少時,矩形MNPQ的周長最短?
②若E為MQ與y軸的交點,是否存在這樣的矩形,使得△CEQ與△QPB相似?若存在,請直接寫出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇泰州高港實驗學校八年級上學期期中考試數(shù)學試卷(解析版) 題型:解答題

已知矩形ABCD,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.

(1)如圖①,連接AF、CE,求證四邊形AFCE是菱形;

(2)求AF的長;

(3)如圖②,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周,即點P自停止,點Q自停止,在運動過程中:已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運動的時間為t秒,當A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

 

查看答案和解析>>

同步練習冊答案