【題目】為了落實黨的精準扶貧政策,A、B兩城決定向C、D兩鄉(xiāng)運送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從AB城往C、D兩鄉(xiāng)運肥料的平均費用如下表. 現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260.

A()

B()

C鄉(xiāng)()

20/

15/

D鄉(xiāng)()

25/

30/

1A城和B城各多少噸肥料?

2)設(shè)從B城運往D鄉(xiāng)肥料x噸,總運費為y元,求yx之間的函數(shù)關(guān)系,并寫出自變量x的取值范圍;

3)由于更換車型,使B城運往D鄉(xiāng)的運費每噸減少a(a0),其余路線運費不變,若C、D兩鄉(xiāng)的總運費最小值不少于10040元,求a的最大整數(shù)值.

【答案】1A城和B城分別有200噸和300噸肥料;(2y=10x+980060≤x≤2603a的最大整數(shù)值為6.

【解析】

1)根據(jù)A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,列方程或方程組得答案;
2)設(shè)從B城運往D鄉(xiāng)肥料x噸,用含x的代數(shù)式分別表示出從A運往運往D鄉(xiāng)的肥料噸數(shù),從B城運往C鄉(xiāng)肥料噸數(shù),及從A城運往C鄉(xiāng)肥料噸數(shù),根據(jù):運費=運輸噸數(shù)×運輸費用,得一次函數(shù)解析式;
3)列出當B城運往D鄉(xiāng)的運費每噸減少aa0)元時的一次函數(shù)解析式,利用一次函數(shù)的性質(zhì)討論,根據(jù)總費用不低于10040元,列出不等式求其整數(shù)解得結(jié)論.

解:(1)設(shè)A城有化肥a噸,B城有化肥b
根據(jù)題意,得

解得

答:A城和B城分別有200噸和300噸肥料;
2)設(shè)從B城運往D鄉(xiāng)肥料x噸,則從B城運往C鄉(xiāng)(300-x)噸
A城運往D鄉(xiāng)肥料(260-x)噸,則運往C鄉(xiāng)(x-60)噸
如總運費為y元,根據(jù)題意,
則:y=20x-60+25260-x+15300-x+30x=10x+9800
由于函數(shù)是一次函數(shù),k=100

60≤x≤260

故答案為y=10x+9800,60≤x≤260
3)從B城運往D鄉(xiāng)肥料x噸,由于B城運往D鄉(xiāng)的運費每噸減少aa0)元,
所以y=20x-60+25260-x+15300-x+30-ax=10-ax+9800,分兩種情況:
①當0a10時,∵10-a0

∴y隨著x的增大而增大,∵60≤x≤260

∴當x=60時,運費最少;

C、D兩鄉(xiāng)的總運費最小值不少于10040

∴(10-ax+9800≥10040

即(10-a)×60+9800≥10040

解得a6,故a的最大整數(shù)值為6.
②當10a30時,∵10-a0

∴y隨著x的增大而減小,∵60≤x≤260

∴當x最大時,運費最少.即當x=260時,運費最少.

∴(10-a)×260+9800≥10040

解得a,故a的最大整數(shù)值為0

綜上,a的最大整數(shù)值為6.

故答案為a的最大整數(shù)值為6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,是由一個等邊ABE和一個矩形BCDE拼成的一個圖形,其點BC,D的坐標分別為(1,2),(1,1),(3,1).

(1)直接寫出E點和A點的坐標;

(2)試以點B為位似中心,作出位似圖形A1B1C1D1E1,使所作的圖形與原圖形的位似比為31;

(3)直接寫出圖形A1B1C1D1E1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一幅長20cm、寬12cm的圖案,如圖,其中有一橫兩豎的彩條,橫、豎彩條的寬度比為3:2.設(shè)豎彩條的寬度為xcm,圖案中三條彩條所占面積為ycm2

(1)求y與x之間的函數(shù)關(guān)系式;

(2)若圖案中三條彩條所占面積是圖案面積的,求橫、豎彩條的寬度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長交AB于點E,交⊙O于點D,滿足∠BEC3ACD

1)如圖1,求證:ABAC;

2)如圖2,連接BD,點F為弧BD上一點,連接CF,弧CF=弧BD,過點AAGCD,垂足為點G,求證:CF+DGCG;

3)如圖3,在(2)的條件下,點HAC上一點,分別連接DH,OHOHDH,過點CCPAC,交⊙O于點POHCP1 ,CF12,連接PF,求PF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(10),OC=3OB,


1)求拋物線的解析式;
2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
3)若點Ex軸上,點P在拋物線上.是否存在以AC,E,P為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在,點分別為的中點,連接,作相切于點,在邊上取一點,使,連接

1)判斷直線的位置關(guān)系,并說明理由;

2)當時,求的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個不相等的實數(shù)根;

(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現(xiàn)需了解在某一時段內(nèi),甲樓對乙樓的采光的影響情況.假設(shè)某一時刻甲樓樓頂B落在乙樓的影子長EC=h,太陽光線與水平線的夾角為α.

(1)用含α的式子表示h;

(2)當α=30°時,甲樓樓頂B的影子落在乙樓的第幾層?從此時算起,若α每小時增加10°,幾小時后,甲樓的影子剛好不影響乙樓采光.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°,點D、E分別是AC、AB的中點,點FBC的延長線上,且∠CDF=∠A

1)求證:四邊形DECF是平行四邊形;

2)若∠A30°,寫出圖中所有與FD長度相等的線段.

查看答案和解析>>

同步練習冊答案