已知函數(shù)(是常數(shù))
(1)若該函數(shù)的圖像與軸只有一個(gè)交點(diǎn),求的值;
(2)若點(diǎn)在某反比例函數(shù)的圖像上,要使該反比例函數(shù)和二次函數(shù)都是隨的增大而增大,求應(yīng)滿足的條件以及的取值范圍;
(3)設(shè)拋物線與軸交于兩點(diǎn),且,,在軸上,是否存在點(diǎn)P,使△ABP是直角三角形?若存在,求出點(diǎn)P及△ABP的面積;若不存在,請(qǐng)說(shuō)明理由。
解:(1)①當(dāng)時(shí),函數(shù)為為一次函數(shù),它的圖像與x軸只有一個(gè)交點(diǎn)。
②當(dāng)時(shí),若函數(shù)的圖像與x軸只有一個(gè)交點(diǎn),則方程有兩個(gè)相等的實(shí)數(shù)根,所以,解得。
綜上所述,若函數(shù)的圖像與x軸只有一個(gè)交點(diǎn),則的值為0或。
(2)設(shè)反比例函數(shù)為,
∵點(diǎn)在反比例函數(shù)的圖像上,∴,即.。
∴反比例函數(shù)為。
∵要使該反比例函數(shù)y隨著x的增大而增大,則。
∵二次函數(shù)的對(duì)稱軸為,
∴要使二次函數(shù)的y隨著x的增大而增大,在的情況下,x必須在對(duì)稱軸的左邊,即。
綜上所述,要使該反比例函數(shù)和二次函數(shù)都y隨著x的增大而增大,必須且。
(3)存在。
∵拋物線與x軸有兩個(gè)交點(diǎn),
∴一元二次方程方程的判別式,解得。
又∵,∴,解得或。
又∵,∴。
∴二次函數(shù)為。
設(shè)P(0,p)是滿足條件的點(diǎn),則,即。
∴。∴。∴。
∴!。
∴。
∴在y軸上,存在點(diǎn)P(0,)或(0,),使△ABP是直角三角形,△ABP的面積為。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個(gè)正方形.你能否在該矩形中裁剪出一個(gè)面積最大的正方形,最大面積是多少?說(shuō)明理由;
(2)請(qǐng)用矩形紙片ABCD剪拼成一個(gè)面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,正方形AOCB在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)B在反比例函數(shù)(>)圖象上,△BOC的面積為.
(1)求反比例函數(shù)的關(guān)系式;
(2)若動(dòng)點(diǎn)E從A開始沿AB向B以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F 從B開始沿BC向C以每秒個(gè)單位的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng).若運(yùn)動(dòng)時(shí)間用t表示,△BEF的面積用表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運(yùn)動(dòng)時(shí)間t取何值時(shí),△BEF的面積最大?
(3)當(dāng)運(yùn)動(dòng)時(shí)間為秒時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使△PEF的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點(diǎn)),點(diǎn)A、C分別在x軸、y軸上,且C點(diǎn)坐標(biāo)為(0,6),將△BCD沿BD折疊(D點(diǎn)在OC邊上),使C點(diǎn)落在DA邊的E點(diǎn)上,并將△BAE沿BE折疊,恰好使點(diǎn)A落在BD邊的F點(diǎn)上.
(1)求BC的長(zhǎng),并求折痕BD所在直線的函數(shù)解析式;
(2)過(guò)點(diǎn)F作FG⊥x軸,垂足為G,F(xiàn)G的中點(diǎn)為H,若拋物線經(jīng)過(guò)B,H, D三點(diǎn),求拋物線解析式;
(3)點(diǎn)P是矩形內(nèi)部的點(diǎn),且點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng)(不含B, D點(diǎn)),過(guò)點(diǎn)P作PN⊥BC,分別交BC 和 BD于點(diǎn)N, M,是否存在這樣的點(diǎn)P,使如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使得y1≥y2的x的取值范圍;
(3)設(shè)拋物線與x軸的右邊交點(diǎn)為A,過(guò)點(diǎn)A作x軸的垂線,交直線y2=x+1于點(diǎn)B,點(diǎn)P在拋物線上,當(dāng)S△PAB≤6時(shí),求點(diǎn)P的橫坐標(biāo)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知M1(3,2),N1(5,﹣1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對(duì)應(yīng)點(diǎn)).
(1)若M(﹣2,5),請(qǐng)直接寫出N點(diǎn)坐標(biāo).
(2)在(1)問(wèn)的條件下,點(diǎn)N在拋物線上,求該拋物線對(duì)應(yīng)的函數(shù)解析式.
(3)在(2)問(wèn)條件下,若拋物線頂點(diǎn)為B,與y軸交于點(diǎn)A,點(diǎn)E為線段AB中點(diǎn),點(diǎn)C(0,m)是y軸負(fù)半軸上一動(dòng)點(diǎn),線段EC與線段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問(wèn)條件下,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿x軸正方向勻速運(yùn)動(dòng),點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)(即BP長(zhǎng)為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時(shí)的△ABP面積的,求此時(shí)BP的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)當(dāng)m=3時(shí),點(diǎn)B的坐標(biāo)為 ,點(diǎn)E的坐標(biāo)為 ;
(2)隨著m的變化,試探索:點(diǎn)E能否恰好落在x軸上?若能,請(qǐng)求出m的值;若不能,請(qǐng)說(shuō)明理由.
(3)如圖,若點(diǎn)E的縱坐標(biāo)為-1,拋物線(a≠0且a為常數(shù))的頂點(diǎn)落在△ADE的內(nèi)部,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知:△ABC為邊長(zhǎng)是的等邊三角形,四邊形DEFG為邊長(zhǎng)是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿EF方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動(dòng),設(shè)△ABC的運(yùn)動(dòng)時(shí)間為t秒(t≥0).
(1)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作∠ABE的角平分線BM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請(qǐng)求出線段EH的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.
(3)如圖3,若四邊形DEFG為邊長(zhǎng)為的正方形,△ABC的移動(dòng)速度為每秒個(gè)單位長(zhǎng)度,其余條件保持不變.△ABC開始移動(dòng)的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG﹣GD以每秒個(gè)單位長(zhǎng)度開始移動(dòng),△ABC停止運(yùn)動(dòng)時(shí),Q點(diǎn)也停止運(yùn)動(dòng).設(shè)在運(yùn)動(dòng)過(guò)程中,DE交折線BA﹣AC于P點(diǎn),則是否存在t的值,使得PC⊥EQ,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com