【題目】定義:數(shù)學(xué)活動(dòng)課上,樂老師給出如下定義:有一組對(duì)邊相等而另一組對(duì)邊不相等的凸四邊形叫做對(duì)等四邊形.
理解:(1)如圖1,已知A、B、C在格點(diǎn)(小正方形的頂點(diǎn))上,請(qǐng)?jiān)诜礁駡D中畫出以格點(diǎn)為頂點(diǎn),AB、BC為邊的兩個(gè)對(duì)等四邊形ABCD;
(2)如圖2,在圓內(nèi)接四邊形ABCD中,AB是⊙O的直徑,AC=BD.求證:四邊形ABCD是對(duì)等四邊形;
(3)如圖3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,點(diǎn)A在BP邊上,且AB=13.用圓規(guī)在PC上找到符合條件的點(diǎn)D,使四邊形ABCD為對(duì)等四邊形,并求出CD的長.
【答案】(1)見解析;(2)見解析;(3)13,12﹣或12+.
【解析】
試題(1)根據(jù)對(duì)等四邊形的定義,進(jìn)行畫圖即可;
(2)連接AC,BD,證明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直徑,所以AB≠CD,即可解答;
(3)根據(jù)對(duì)等四邊形的定義,分兩種情況:①若CD=AB,此時(shí)點(diǎn)D在D1的位置,CD1=AB=13;②若AD=BC=11,此時(shí)點(diǎn)D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性質(zhì),求出相關(guān)相關(guān)線段的長度,即可解答.
試題解析:解:(1)如圖1所示(畫2個(gè)即可).
(2)如圖2,連接AC,BD,
∵AB是⊙O的直徑,
∴∠ADB=∠ACB=90°,
在Rt△ADB和Rt△ACB中,
∴Rt△ADB≌Rt△ACB,
∴AD=BC,
又∵AB是⊙O的直徑,
∴AB≠CD,
∴四邊形ABCD是對(duì)等四邊形.
(3)如圖3,點(diǎn)D的位置如圖所示:
①若CD=AB,此時(shí)點(diǎn)D在D1的位置,CD1=AB=13;
②若AD=BC=11,此時(shí)點(diǎn)D在D2、D3的位置,AD2=AD3=BC=11,
過點(diǎn)A分別作AE⊥BC,AF⊥PC,垂足為E,F,
設(shè)BE=x,
∵tan∠PBC=,
∴AE=,
在Rt△ABE中,AE2+BE2=AB2,
即,
解得:x1=5,x2﹣5(舍去),
∴BE=5,AE=12,
∴CE=BC﹣BE=6,
由四邊形AECF為矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,,
∴,,
綜上所述,CD的長度為13,12﹣或12+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)不透明的布袋,甲袋中有兩個(gè)完全相同的小球,分別標(biāo)有數(shù)字1和-2;乙袋中有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字-1、0和2.小麗先從甲袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機(jī)取出一個(gè)小球,記錄下小球上的數(shù)字為y,設(shè)點(diǎn)A的坐標(biāo)為(x,y).
(1)請(qǐng)用表格或樹狀圖列出點(diǎn)A所有可能的坐標(biāo);
(2)求點(diǎn)A在反比例函數(shù)y=圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,⊙O中,弦AC、BD交于E,.
(1)求證:;
(2)延長EB到F,使EF=CF,試判斷CF與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知點(diǎn)C周圍200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.
(1)MN是否穿過原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育節(jié)中,學(xué)校組織八年級(jí)學(xué)生舉行定點(diǎn)投籃比賽,要求每班選派10名隊(duì)員參加.下面是一班和二班參加隊(duì)員定點(diǎn)投籃比賽成績的折線統(tǒng)計(jì)圖(每人投籃10次,每投中一次記1分),請(qǐng)根據(jù)圖中信息回答下列問題:
(1)將下表中一、二班隊(duì)員投籃比賽成績的有關(guān)數(shù)據(jù)補(bǔ)充完整:
(2)觀察統(tǒng)計(jì)圖,判斷一班、二班10名隊(duì)員投籃成績的方差的大小關(guān)系:S2一班 S2二班;
(3)綜合(1)(2)中的數(shù)據(jù),選擇一個(gè)方面對(duì)一班、二班10名隊(duì)員定點(diǎn)投籃比賽成績進(jìn)行評(píng)價(jià).
例如:從兩班成績的平均數(shù)看,一班成績高于二班,除此之外,你的評(píng)價(jià)是:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式:
第2個(gè)等式:
第3等式:
第4個(gè)等式:
請(qǐng)解答下列問題:
(1)按以上規(guī)律寫出第5個(gè)等式:a5= = .
(2)用含n的式子表示第n個(gè)等式:an= = (n為正整數(shù)).
(3)求a1+a2+a3+a4+…+a2018的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某高樓頂部有一信號(hào)發(fā)射塔,在矩形建筑物ABCD的A、C兩點(diǎn)測(cè)得該塔頂端F的仰角分別為∠α=48°和∠β=65°,矩形建筑物寬度AD=20m,高度CD=30m,則信號(hào)發(fā)射塔頂端到地面的高度FG為__米(結(jié)果精確到1m).
參考數(shù)據(jù):sin48°=0.7,cos48°=0.7,tan48°=1.1,cos65°=0.4,tan65°=2.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2-12ax+36a-5的圖象在4<x<5這一段位于x軸下方,在8<x<9這一段位于x軸上方,則a的值為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以RtABC的直角邊AC為直徑作O交斜邊AB于點(diǎn)E,連接EO并延長交BC的延長線于點(diǎn)D,作OF//AB交BC于點(diǎn)F,連接EF、EC.
(1)求證:OFCE;
(2)求證:EF是O的切線;
(3)若O的半徑為3,EAC60,求tanADE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com