如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-4,3)、B(2,0)兩點,對稱軸為y軸,經(jīng)過點C(0,-2)的直線l與x軸平行,P(m,n)是拋物線上的動點,O為坐標(biāo)原點.
(1)求直線AB和拋物線的函數(shù)解析式;
(2)以A為圓心,AO為半徑畫⊙A,判斷直線l與⊙A的位置關(guān)系,并說明理由;
(3)設(shè)PO=d1,點P到直線l的距離為d2,試探索d1、d2間的數(shù)量關(guān)系;
(4)D點在直線AB上,D點的橫坐標(biāo)為-2,當(dāng)△PDO的周長最小時,求四邊形CODP的面積.

【答案】分析:(1)用待定系數(shù)法即可求出直線AB的解析式;根據(jù)拋物線的對稱軸為y軸,可得拋物線經(jīng)過(-4,3),(2,0),(-2,0)三點,然后用待定系數(shù)法即可求出拋物線的解析式;
(2)根據(jù)A點坐標(biāo)可求出半徑OA的長,然后判斷A到直線l的距離與半徑OA的大小關(guān)系即可;
(3)首先設(shè)P(x,x2-1),即可求得d1、d2的長,繼而可求得d1、d2間的數(shù)量關(guān)系;
(4)根據(jù)直線AB的解析式可求出D點的坐標(biāo),即可得到OD的長,由于OD的長為定值,若△POD的周長最小,那么PD+OP的長最小,可過P作y軸的平行線,交直線l于M;首先證PO=PM,此時PD+OP=PD+PM,而PD+PM≥DM,因此PD+PM最小時,應(yīng)有PD+PM=DM,即D、P、M三點共線,由此可求得P點的坐標(biāo);又由S四邊形CODP=S△POD+S△POC,即可求得答案.
解答:解:(1)設(shè)直線AB的解析式為y=kx+b,則有:
,
解得:
∴直線AB的解析式為y=-x+1;
由題意知:拋物線的對稱軸為y軸,則拋物線經(jīng)過(-4,3),(2,0),(-2,0)三點;
設(shè)拋物線的解析式為:y=a(x-2)(x+2),
則有:3=a(-4-2)(-4+2),
解得:a=,
∴拋物線的解析式為:y=x2-1;

(2)∵A(-4,3),
∴OA==5;
∵A到直線l的距離為:3-(-2)=5;
∴⊙A的半徑等于圓心A到直線l的距離,
即直線l與⊙A相切;

(3)d1=d2
理由:∵P(m,n)是拋物線上的動點,
∴設(shè)P(x,x2-1),
∴PO=d1===x2+1,點P到直線l的距離為d2=x2-1-(-2)=x2+1,
∴d1=d2;

(4)過P作PM∥y軸,交直線l于M;
則P(m,n),M(m,-2);
∴PO2=m2+n2,PM2=(n+2)2;
∵n=m2-1,即m2=4n+4;
∴PO2=n2+4n+4=(n+2)2
∴PO2=PM2,
即PO=PM;
∵D點的橫坐標(biāo)為-2,
∴D(-2,2),則OD的長為定值;
若△PDO的周長最小,則PO+PD的值最。
∵PO+PD=PD+PM≥DM,
∴PD+PO的最小值為DM,
即當(dāng)D、P、M三點共線時PD+PM=PO+PD=DM;
此時點P的橫坐標(biāo)為-2,代入拋物線的解析式可得y=1-1=0,
即P(-2,0);
∴S四邊形CODP=S△POD+S△POC=×2×2+×2×2=4.
點評:此題考查了待定系數(shù)法求函數(shù)的解析式、兩點間的距離公式、切線的判定以及圖形面積的求解方法.此題難度較大,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標(biāo),若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標(biāo).(可直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(-1,0)精英家教網(wǎng)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案