已知如圖所示,在△ABC中,AB=AC,AD⊥BC,垂足為點(diǎn)D,AN 是△ABC外角∠CAM的平分線,CE⊥AN,垂足為點(diǎn)E。
(1)求證:四邊形ADCE為矩形;
(2)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明。
證明:(1)在△ABC中,AB=AC,AD⊥BC,
∴∠BAD=∠DAC,
∵AN是△ABC外角∠CAM的平分線,
∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE=×180°=90°,
又∵AD⊥BC,CE⊥AN,
∴∠ADC=∠CEA=90°,
∴四邊形ADCE為矩形;
(2)例如,當(dāng)AD=BC時(shí),四邊形ADCE是正方形,
證明:∵AB=AC,AD⊥BC于D,
∴DC=BC,
又AD=BC,∴DC=AD,
由(1)知四邊形ADCE為矩形,
∴矩形ADCE是正方形。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,連接AC.
(1)求cos∠ACB的值;
(2)若E、F分別是AB、DC的中點(diǎn),連接EF,求線段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知如圖所示,在平行四邊形ABCD中,∠A=60°,E、F分別是AB、CD的中點(diǎn),且AB=2AD.
(1)求證:BD=
3
EF;
(2)試判斷EF與BD的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知如圖所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,則BE的長(zhǎng)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•巴中)已知如圖所示,在梯形ABCD中,AD∥BC,點(diǎn)M是AD)的中點(diǎn).連接BM交AC于N.BM的延長(zhǎng)線交CD的延長(zhǎng)線于E.
(1)求證:
EM
EB
=
AM
BC
;
(2)若MN=1cm,BN=3cm,求線段EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•巴中)已知如圖所示,在平面直角坐標(biāo)系中,四邊形ABC0為梯形,BC∥A0,四個(gè)頂點(diǎn)坐標(biāo)分別為A(4,0),B(1,4),C(0,4),O(0,O).一動(dòng)點(diǎn)P從O出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿OA的方向向A運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿A→B→C的方向向C運(yùn)動(dòng).兩個(gè)動(dòng)點(diǎn)若其中一個(gè)到達(dá)終點(diǎn),另一個(gè)也隨之停止.設(shè)其運(yùn)動(dòng)時(shí)間為t秒.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)當(dāng)t為何值時(shí),PB與AQ互相平分;
(3)連接PQ,設(shè)△PAQ的面積為S,探索S與t的函數(shù)關(guān)系式.求t為何值時(shí),S有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案