【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論: ①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
<a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是(

A.①③
B.①③④
C.②④⑤
D.①③④⑤

【答案】D
【解析】解:①∵函數(shù)開口方向向上, ∴a>0;
∵對(duì)稱軸在y軸右側(cè)
∴ab異號(hào),
∵拋物線與y軸交點(diǎn)在y軸負(fù)半軸,
∴c<0,
∴abc>0,
故①正確;
②∵圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸為直線x=1,
∴圖象與x軸的另一個(gè)交點(diǎn)為(3,0),
∴當(dāng)x=2時(shí),y<0,
∴4a+2b+c<0,
故②錯(cuò)誤;
③∵圖象與x軸交于點(diǎn)A(﹣1,0),
∴當(dāng)x=﹣1時(shí),y=(﹣1)2a+b×(﹣1)+c=0,
∴a﹣b+c=0,即a=b﹣c,c=b﹣a,
∵對(duì)稱軸為直線x=1
=1,即b=﹣2a,
∴c=b﹣a=(﹣2a)﹣a=﹣3a,
∴4ac﹣b2=4a(﹣3a)﹣(﹣2a)2=﹣16a2<0
∵8a>0
∴4ac﹣b2<8a
故③正確
④∵圖象與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間,
∴﹣2<c<﹣1
∴﹣2<﹣3a<﹣1,
>a> ;
故④正確
⑤∵a>0,
∴b﹣c>0,即b>c;
故⑤正確;
故選:D.
根據(jù)對(duì)稱軸為直線x=1及圖象開口向下可判斷出a、b、c的符號(hào),從而判斷①;根據(jù)對(duì)稱軸得到函數(shù)圖象經(jīng)過(guò)(3,0),則得②的判斷;根據(jù)圖象經(jīng)過(guò)(﹣1,0)可得到a、b、c之間的關(guān)系,從而對(duì)②⑤作判斷;從圖象與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間可以判斷c的大小得出④的正誤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩條筆直的街道AB,CD相交于點(diǎn)O,街道OE,OF分別平分∠AOC,BOD,比較∠1與∠2的關(guān)系,并說(shuō)明街道EOF是筆直的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,ADBC邊上的中線,FAD邊上的動(dòng)點(diǎn),EAC邊上一點(diǎn)AE2當(dāng)EFCF取得最小值時(shí),∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為1的小正方形網(wǎng)格中,AOB的頂點(diǎn)均在格點(diǎn)上.

(1)B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn)坐標(biāo)為 ;

(2)將AOB向左平移3個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度得到A1O1B1,請(qǐng)畫出A1O1B1;

(3)在(2)的條件下,AOB邊AB上有一點(diǎn)P的坐標(biāo)為(a,b),則平移后對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若不等式組 的解集為﹣1<x<1,則(a﹣3)(b+3)的值為(
A.1
B.﹣1
C.2
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,BAC=50°,C=70°,求∠DAC及∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣x+3與x軸,y軸分別交于B,C兩點(diǎn),拋物線y=ax2+bx+c過(guò)A(1,0),B,C三點(diǎn).

(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖形上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值.
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使△PBN是以BN為腰的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓚(gè)反比例函數(shù)y= (k>1)和y= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y= 的圖象上,PC⊥x軸于點(diǎn)C,交y= 的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y= 的圖象于點(diǎn)B,BE⊥x軸于點(diǎn)E,當(dāng)點(diǎn)P在y= 圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案