操作與探究:

(1)圖①是一塊直角三角形紙片。將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕。試證明△CBE等腰三角形;

(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②)。通過折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為組合矩形。你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請?jiān)趫D③中畫出折痕;

(3)請你在圖④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;

(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上)。請你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件是,一定能折成組合矩形?

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

操作與探究
探索:在如圖1至圖3中,△ABC的面積為a.
(1)如圖1,延長△ABC的邊BC到點(diǎn)D,使CD=BC,連接DA、若△ACD的面積為S1,則S1=
 
(用含a的代數(shù)式表示);
(2)如圖2,延長△ABC的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE、若△DEC的面積為S2,則S2=
 
(用含a的代數(shù)式表示);
(3)在圖2的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到△DEF(如圖3)、若陰影部分的面積為S3,則S3=
 
(用含a的代數(shù)式表示).
發(fā)現(xiàn):像上面那樣,將△ABC各邊均順次延長一倍,連接所得端點(diǎn),得到△DEF(如圖3),此時(shí),我們稱△ABC向外擴(kuò)展了一次、可以發(fā)現(xiàn),擴(kuò)展一次后得到的△DEF的面積是原來△ABC面積的
 
倍.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、操作與探究:
(1)圖①是一塊直角三角形紙片.將該三角形紙片按如圖方法折疊,是點(diǎn)A與點(diǎn)C重合,DE為折痕.試證明△CBE等腰三角形;
(2)再將圖①中的△CBE沿對稱軸EF折疊(如圖②).通過折疊,原三角形恰好折成兩個(gè)重合的矩形,其中一個(gè)是內(nèi)接矩形,另一個(gè)是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個(gè)矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個(gè)組合矩形嗎?如果能折成,請?jiān)趫D③中畫出折痕;
(3)請你在圖④的方格紙中畫出一個(gè)斜三角形,同時(shí)滿足下列條件:①折成的組合矩形為正方形;②頂點(diǎn)都在格點(diǎn)(各小正方形的頂點(diǎn))上;
(4)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內(nèi)接矩形的四個(gè)頂點(diǎn)分別在原四邊形的四條邊上).請你進(jìn)一步探究,一個(gè)非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足何條件時(shí),一定能折成組合矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、操作與探究
(1)分別畫出“q”和“F”關(guān)于直線l的對稱圖形(畫出示意圖即可).

(2)圖中小冬和小亮上衣上印的字母分別是什么?
(3)把字母“q”和“F”寫在薄紙上,觀察紙的背面,寫出你看到的字母背影.
(4)小明站在五個(gè)學(xué)生的身后,這五個(gè)學(xué)生正向前方某人用手勢示意一個(gè)五位數(shù),從小明站的地方看(如圖所示),這個(gè)五位數(shù)是23456.請你判斷出他們示意的真實(shí)數(shù)字是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、操作與探究:
如圖1,在正方形ABCD中,AB=2,將一塊足夠大的三角板的直角頂點(diǎn)P放在正方形的中心O處,將三角板繞O點(diǎn)旋轉(zhuǎn),三角板的兩直角邊分別交邊AB、BC于點(diǎn)E、F.
(1)試猜想PE、PF之間的大小關(guān)系,并證明你的結(jié)論;
(2)求四邊形PEBF的面積;
(3)現(xiàn)將直角頂點(diǎn)P移至對角線BD上其他任意一點(diǎn),PE、PF之間的大小關(guān)系是否改變?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作與探究:
把兩塊全等的等腰直角△ABC和△DEF疊放在一起,使△DEF的頂點(diǎn)E與△ABC的斜邊中點(diǎn)O重合,其中∠BAC=∠EDF=90°,∠C=∠F=45°,AB=DE=4,將△ABC固定不動(dòng),讓△DEF繞點(diǎn)O旋轉(zhuǎn).設(shè)射線ED與射線CA相交于點(diǎn)P,射線EF與射線AB相交于點(diǎn)Q.
(1)如圖①,當(dāng)射線EF經(jīng)過點(diǎn)A,即點(diǎn)Q與點(diǎn)A重合時(shí),試說明△COP∽△BAO,并求CP•BQ值.
(2)如圖②,若△DEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角小于45°時(shí),問CP•BQ的值是否改變?說明你的理由.
(3)若△DEF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角大于45°而小于90°時(shí),請?jiān)趫D③中畫出符合條件的圖形,并寫出CP•BQ的值.(不用說明理由)

查看答案和解析>>

同步練習(xí)冊答案