(2010•鎮(zhèn)海區(qū)模擬)如圖,△ABC是等腰直角三角形,AC=BC=2,以斜邊AB上的點O為圓心的圓分別與AC、BC相切于點E、F,與AB分別相交于點G、H,且EH的延長線與CB的延長線交于點D,則CD的長為   
【答案】分析:先連接OE、OF,由于ACBC是切線,可知∠OEC=∠OFC=90°,又OE=OF,∠C=90°,可證四邊形CEOF是正方形,易得OE∥BC,而O是AB的中點,利用平行線分線段成比例定理的推論,可證AE=CE,易求AE=CE=1,即OH=1,利用OE∥CD,可得△OEH∽△BDH,利用相似三角形的性質(zhì)可求BD,從而易求CD.
解答:解:如右圖所示,連接OE、OF,
∵⊙O與AC、BC切于點E、F,
∴∠OEC=∠OFC=90°,OE=OF,
又∵△ABC是等腰直角三角形,
∴∠C=90°,
∴四邊形CEOF是正方形,
∴OE∥BC,
又∵O是AB的中點,
∴AE=CE,
又∵AC=2,
∴AE=CE=1,
∴OE=OF=CE=1,
∴OH=1,
∵OE∥CD,
∴△OEH∽△BDH,
=
又∵AB==2,
∴OB=,
=,
∴BD=-1,
∴CD=2+BD=+1.
點評:本題考查了正方形的判定和性質(zhì)、勾股定理、等腰直角三角形的性質(zhì)、平行線分線段成比例定理的推論、相似三角形的判定和性質(zhì)、切線的性質(zhì).解題的關(guān)鍵是構(gòu)造正方形CEOF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年九年級(下)第一次階段性測試數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•鎮(zhèn)海區(qū)模擬)如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個四邊形,進(jìn)而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形--矩形.
實踐探究:
(1)矩形ABEF的面積是______;(用含a,b,c的式子表示)
(2)類比圖2的剪拼方法,請你就圖3和圖4的兩種情形分別畫出剪拼成一個平行四邊形的示意圖.

聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.
如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一個平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年中考數(shù)學(xué)總復(fù)習(xí)專題:解直角三角形(解析版) 題型:填空題

(2010•鎮(zhèn)海區(qū)模擬)若△ABC中,∠C=90°,AC:BC=3:4,那么sinA=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省玉溪市易門縣六街中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2010•鎮(zhèn)海區(qū)模擬)如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個四邊形,進(jìn)而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形--矩形.
實踐探究:
(1)矩形ABEF的面積是______;(用含a,b,c的式子表示)
(2)類比圖2的剪拼方法,請你就圖3和圖4的兩種情形分別畫出剪拼成一個平行四邊形的示意圖.

聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.
如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一個平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年河北省唐山市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•鎮(zhèn)海區(qū)模擬)如圖1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我們可以取直角梯形ABCD的非直角腰CD的中點P,過點P作PE∥AB,裁掉△PEC,并將△PEC拼接到△PFD的位置,構(gòu)成新的圖形(如圖2).
思考發(fā)現(xiàn):
小明在操作后發(fā)現(xiàn),該剪拼方法就是先將△PEC繞點P逆時針旋轉(zhuǎn)180°到△PFD的位置,易知PE與PF在同一條直線上.又因為在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,則∠FDP+∠ADP=180°,所以AD和DF在同一條直線上,那么構(gòu)成的新圖形是一個四邊形,進(jìn)而根據(jù)平行四邊形的判定方法,可以判斷出四邊形ABEF是一個平行四邊形,而且還是一個特殊的平行四邊形--矩形.
實踐探究:
(1)矩形ABEF的面積是______;(用含a,b,c的式子表示)
(2)類比圖2的剪拼方法,請你就圖3和圖4的兩種情形分別畫出剪拼成一個平行四邊形的示意圖.

聯(lián)想拓展:
小明通過探究后發(fā)現(xiàn):在一個四邊形中,只要有一組對邊平行,就可以剪拼成平行四邊形.
如圖5的多邊形中,AE=CD,AE∥CD,能否象上面剪切方法一樣沿一條直線進(jìn)行剪切,拼成一個平行四邊形?若能,請你在圖中畫出剪拼的示意圖并作必要的文字說明;若不能,簡要說明理由.

查看答案和解析>>

同步練習(xí)冊答案