如圖,已知點E為?ABCD的BC邊上的任意一點,則S△ADE:S□ABCD的值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
A
分析:三角形ADE的面積為底邊長與高的積,而平行四邊形的面積為底邊長與高的積,進而可得出其面積的比例.
解答:可設平行四邊形的高為h,
則S△ADE=AD•h,
SABCD=AD•h,
∴S△ADE:SABCD=1:2,
故此題選A.
點評:本題主要考查平行四邊形的性質及簡單的面積計算問題,能夠熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知點C為線段AE上一點,AE=8cm,△ABC和△CDE為AE同側的兩個等邊三角形,連接BE交CD于N,連接AD交BC于M,連接MN.
(1)求證:AD=BE;
(2)求證:MN∥AE;
(3)若點C在AE上運動(點C不與A、E重合),當點C運動到什么位置時,線段MN的長度最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•龍湖區(qū)模擬)如圖,已知點P為反比例函數(shù)y=
4x
的圖象上的一點,過點P作橫軸的垂線,垂足為M,則△OPM的面積為
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•玉林)如圖,已知點O為Rt△ABC斜邊AC上一點,以點O為圓心,OA長為半徑的⊙O與BC相切于點E,與AC相交于點D,連接AE.
(1)求證:AE平分∠CAB;
(2)探求圖中∠1與∠C的數(shù)量關系,并求當AE=EC時tanC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點D為△ABC中AC邊上一點,且AD:DC=3;4,設
BA
=
a
BC
b

(1)在圖中畫出向量
BD
分別在
a
,
b
方向上的分向量;
(2)試用
a
b
的線性組合表示向量
BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點D為等腰直角△ABC內一點,AC=BC,∠CAD=∠CBD=15°,E為AD延長線上的一點,且CE=CA.若DE=acm,BD=bcm(a>b),則CD=
a-b
a-b
cm.

查看答案和解析>>

同步練習冊答案