【題目】如圖,頂點為M的拋物線y=a(x+1)2-4分別與x軸相交于點A,B(點A在點B的)右側),與y軸相交于點C(0,﹣3).
(1)求拋物線的函數表達式;
(2)判斷△BCM是否為直角三角形,并說明理由.
(3)拋物線上是否存在點N(不與點C重合),使得以點A,B,N為頂點的三角形的面積與S△ABC的面積相等?若存在,求出點N的坐標;若不存在,請說明理由.
【答案】(1);(2)見解析;(3)存在,(,3),(,3),(,)
【解析】
(1)用待定系數法求出拋物線解析式即可;
(2)由拋物線解析式確定出拋物線的頂點坐標和與x軸的交點坐標,用勾股定理的逆定理即可;
(3)根據題意得出,然后求出,再代入求解即可.
(1)∵拋物線與軸相交于點C(0,-3).
∴,
∴,
∴拋物線解析式為,
(2)△BCM是直角三角形,
理由:由(1)有,拋物線解析式為,
∴頂點為M的坐標為(-1,-4),
由(1)拋物線解析式為,
令,,
∴,
∴點A的坐標為(1,0),點B的坐標為(-3,0),
∴,
,
=,
∵,
∴,
∴△BCM是直角三角形,
(3)設N點縱坐標為,
根據題意得,即,
∴,
當N點縱坐標為3時,,
解得:
當N點縱坐標為-3時,,
解得:(與點C重合,舍去),
∴N點坐標為(,3),(,3),(,),
科目:初中數學 來源: 題型:
【題目】如圖,正方形網格中(每個小正方形的邊長都為1個單位),在平面直角坐標系內,△OBC的頂點B、C分別為B(0,﹣4),C(2,﹣4).
(1)請在圖中標出△OBC的外接圓的圓心P的位置,并填寫:圓心P的坐標為 ;
(2)畫出△ABC繞點O逆時針旋轉90°后的△OB1C1;
(3)在(2)的條件下,求出旋轉過程中點C所經過分路徑長(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校組織外出研學活動,若每位老師帶隊14名學生,則還剩10名學生沒老師帶;若每位老師帶隊15名學生,就有一位老師少帶6名學生,現有甲、乙兩種大型客車,它們的載客量和租金如表所示:
甲型客車 | 乙型客車 | |
載客量(人/輛) | 35 | 30 |
租金(元/輛) | 400 | 320 |
學校計劃本次研學活動的租金總費用不超過3000元,為了保證安全,每輛客車上至少要有2名老師.
(1)參加此次研學活動的老師和學生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛車上至少要有2名老師,可知租車總輛數為____輛;
(3)學校共有幾種租車方案?最少租車費用是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學為了解九年級學生對三大球類運動的喜愛情況,從九年級學生中隨機抽取部分學生進行調查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖.請根據兩幅統(tǒng)計圖中的信息回答下列問題:
(1)求參與調查的學生中,喜愛排球運動的學生人數,并補全條形圖;
(2)若該中學九年級共有800名學生,請你估計該中學九年級學生中喜愛籃求運動的學生有多少名?
(3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學生為一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On均與直線l相切,設半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30時,且r1=1時,r2017=_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】北京時間2020年5月12日9時16分,我國自主研制的快舟一號甲運載火箭在酒泉衛(wèi)星發(fā)射中心發(fā)射成功.此次發(fā)射的“行云二號”01星命名為“行云·武漢號”,并通過在火箭箭體上涂刷“英雄武漢偉大中國”和“致敬醫(yī)護工作者群像”的方式,致敬武漢、武漢人民和廣大醫(yī)護工作者.如圖,火箭從地面L處發(fā)射,當火箭達到A點時,從位于地面R處雷達站測得AR的距離是6km,仰角為42.4°;1秒后火箭到達B點,此時測得仰角為45.5°求這枚火箭從A到B的平均速度是多少(結果精確到0.01)?(參考數據:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點測得A點的仰角為30°,測得B點的俯角為20°,求斜拉索頂端A點到海平面B點的距離(AB的長).(已知≈1.732,tan20°≈0.36,結果精確到0.1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(初步探究)
(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點E是邊BC上一點,AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由.
(解決問題)
(2)如圖2,在長方形ABCD中,點P是邊CD上一點,在邊BC、AD上分別作出點E、F,使得點F、E、P是一個等腰直角三角形的三個頂點,且PE=PF,∠FPE=90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.
(拓展應用)
(3)如圖3,在平面直角坐標系xOy中,已知點A(2,0),點B(4,1),點C在第一象限內,若△ABC是等腰直角三角形,則點C的坐標是 .
(4)如圖4,在平面直角坐標系xOy中,已知點A(1,0),點C是y軸上的動點,線段CA繞著點C按逆時針方向旋轉90°至線段CB,CA=CB,連接BO、BA,則BO+BA的最小值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com