(2003•岳陽)二次函數(shù)y=-2x2+4x-5,它的對稱軸、頂點坐標分別是( )
A.直線x=1,(1,-3)
B.直線x=-1,(-1,-3)
C.直線x=1,(1,3)
D.直線x=-1,(-1,3)
【答案】分析:根據(jù)配方法先對函數(shù)式變形,即可求出其對稱軸和頂點坐標.
解答:解:∵y=-2x2+4x-5=-2(x2-2x)-5=-2(x2-2x+1-1)-5=-2(x-1)2-3,
∴它的對稱軸、頂點坐標分別是直線x=1,(1,-3).
故選A.
點評:此題考查了二次函數(shù)的性質,求二次函數(shù)的對稱軸與頂點坐標的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•岳陽)如圖,點M(,0)為Rt△OED斜邊上的中點,O為坐標原點,∠ODE=90°,過D作AB⊥DM交x軸的正半軸于A點,交y軸的正半軸于B點,且sin∠OAB=
(1)求:過E、D、O三點的二次函數(shù)解析式.
(2)問此拋物線頂點C是否在直線AB上,請予以證明;若頂點不在AB上,請說明理由.
(3)試在y軸上作出點P,使PC+PE為最小,并求出P點的坐標(不寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年湖南省岳陽市中考數(shù)學試卷(解析版) 題型:解答題

(2003•岳陽)如圖,點M(,0)為Rt△OED斜邊上的中點,O為坐標原點,∠ODE=90°,過D作AB⊥DM交x軸的正半軸于A點,交y軸的正半軸于B點,且sin∠OAB=
(1)求:過E、D、O三點的二次函數(shù)解析式.
(2)問此拋物線頂點C是否在直線AB上,請予以證明;若頂點不在AB上,請說明理由.
(3)試在y軸上作出點P,使PC+PE為最小,并求出P點的坐標(不寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2003•岳陽)二次函數(shù)y=-2x2+4x-5,它的對稱軸、頂點坐標分別是( )
A.直線x=1,(1,-3)
B.直線x=-1,(-1,-3)
C.直線x=1,(1,3)
D.直線x=-1,(-1,3)

查看答案和解析>>

同步練習冊答案