【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),且過點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).
【答案】(1)二次函數(shù)解析式為y=x2﹣2x﹣3;(2)平移后所得圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(4,0).
【解析】
試題分析:(1)有頂點(diǎn)就用頂點(diǎn)式來求二次函數(shù)的解析式;
(2)由于是向右平移,可讓二次函數(shù)的y的值為0,得到相應(yīng)的兩個(gè)x值,算出負(fù)值相對于原點(diǎn)的距離,而后讓較大的值也加上距離即可.
試題解析:(1)∵二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),
∴設(shè)二次函數(shù)解析式為y=a(x﹣1)2﹣4,
把點(diǎn)B(3,0)代入二次函數(shù)解析式,得:
0=4a﹣4,解得a=1,
∴二次函數(shù)解析式為y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;
(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.
∴二次函數(shù)圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)分別為(3,0)和(﹣1,0),
∴二次函數(shù)圖象上的點(diǎn)(﹣1,0)向右平移1個(gè)單位后經(jīng)過坐標(biāo)原點(diǎn).
故平移后所得圖象與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(4,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖E在BC上,AB⊥BC于B,DC⊥BC于C,連結(jié)AE、DE,AE=DE.若AB=20,DC=40,BC=60.
(1)求DE的長
(2)求∠AED的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,矩形OABC的長OA=,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=﹣x2+bx+c上,求b,c的值,并說明點(diǎn)C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系的第二象限內(nèi)有一點(diǎn)P,點(diǎn)P到x軸的距離為2,到y軸的距離為3,則點(diǎn)P的坐標(biāo)是( )
A.(-3,2)B.(3,-2)C.(2,-3)D.(-2,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)進(jìn)行綠地改造,原有一正方形綠地,現(xiàn)將它每邊都增加3m,則面積增加了63m2 . 問:原綠地的邊長為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,相等的一組是( 。
A. (﹣2)2和|﹣2|2 B. (﹣3)4和﹣34 C. (﹣4)3和|﹣4|3 D. (﹣3)4和﹣(﹣3)4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,CD是∠ACB的角平分線,CE是AB邊上的高,
(1)若∠A=40°,∠B=60°,求∠DCE的度數(shù).
(2)若∠A=m,∠B=n,求∠DCE.(用m、n表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com