-xn與(-x)n的正確關(guān)系是


  1. A.
    相等
  2. B.
    互為相反數(shù)
  3. C.
    當(dāng)n為奇數(shù)時,它們互為相反數(shù);當(dāng)n為偶數(shù)時,它們相等
  4. D.
    當(dāng)n為奇數(shù)時,它們相等;當(dāng)n為偶數(shù)時,它們互為相反數(shù)
D
解析:
底數(shù)有負(fù)號時的冪的運算,比如(-2)2和-22的意義不同,前者底數(shù)為-2,指數(shù)是+2,值為正;而后者底數(shù)是2,指數(shù)也是2,值為負(fù),兩者不能混為一談.當(dāng)指數(shù)為奇數(shù)時,雖然意義不同但值卻是相等的.比如:(-2)3和-23的值相等.一般來說,當(dāng)n為偶數(shù)時,-an≠(-a)n;當(dāng)n為奇數(shù)時,-an=(-a)n
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、-xn與(-x)n的正確關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、(1)李剛同學(xué)在計算122和892時,借助計算器探究“兩位數(shù)的平方”有否簡捷的計算方法.他經(jīng)過探索并用計算器驗證,再用數(shù)學(xué)知識解釋,得出“兩位數(shù)的平方”可用“豎式計算法”進(jìn)行計算,
如:122=144.其中第一行的“01”和“04”分別是十位數(shù)和個位數(shù)的平方,各占兩個位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們并排排列;第二行的“04”為十位數(shù)與個位數(shù)積的2倍,占兩個位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們按上面的豎式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分別是十位數(shù)和個位數(shù)的平方,各占兩個位置,再把它們并排排列;第二行的“144”為十位數(shù)與個位數(shù)積的2倍,再把它們按上面的豎式相加就得到了892=7921.
①請你用上述方法計算752和682(寫出“豎式計算”過程);
②請你用數(shù)學(xué)知識解釋這種“兩位數(shù)平方的豎式計算法”合理性.
(2)閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-l
(n為正整數(shù));
②根據(jù)這一規(guī)律,計算:1+2+22+23+24+…+22008+22009=
22010-l
( n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•燕山區(qū)一模)如圖,已知直線l1:y=-x+2與l2y=
1
2
x+
1
2
,過直線l1與x軸的交點P1作x軸的垂線交l2于Q1,過Q1作x軸的平行線交l1于P2,再過P2作x軸的垂線交l2于Q2,過Q2作x軸的平行線交l1于P3,…,這樣一直作下去,可在直線l1上繼續(xù)得到點P4,P5,…,Pn,….設(shè)點Pn的橫坐標(biāo)為xn,則x2=
1
2
1
2
,xn+1與xn的數(shù)量關(guān)系是
xn+2xn+1=3
xn+2xn+1=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北塘區(qū)一模)定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.如圖,直線l:y=
1
3
x+b經(jīng)過點M(0,
1
4
),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn) (n為正整數(shù)),依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n為正整數(shù)).若x1=d(0<d<1),當(dāng)d為( 。⿻r,這組拋物線中存在美麗拋物線.

查看答案和解析>>

同步練習(xí)冊答案