【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.
(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.
(2)性質探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關系.
猜想結論:(要求用文字語言敘述)
寫出證明過程(先畫出圖形,寫出已知、求證).
(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.
【答案】
(1)
解:四邊形ABCD是垂美四邊形.
證明:∵AB=AD,
∴點A在線段BD的垂直平分線上,
∵CB=CD,
∴點C在線段BD的垂直平分線上,
∴直線AC是線段BD的垂直平分線,
∴AC⊥BD,即四邊形ABCD是垂美四邊形
(2)
解:猜想結論:垂美四邊形的兩組對邊的平方和相等.
如圖2,已知四邊形ABCD中,AC⊥BD,垂足為E,
求證:AD2+BC2=AB2+CD2
證明:∵AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2
(3)
解:連接CG、BE,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,
,
∴△GAB≌△CAE,
∴∠ABG=∠AEC,又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四邊形CGEB是垂美四邊形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC=3,CG=4 ,BE=5 ,
∴GE2=CG2+BE2﹣CB2=73,
∴GE=
【解析】(1)根據(jù)垂直平分線的判定定理證明即可;(2)根據(jù)垂直的定義和勾股定理解答即可;(3)根據(jù)垂美四邊形的性質、勾股定理、結合(2)的結論計算.
科目:初中數(shù)學 來源: 題型:
【題目】三角形兩邊的長是3和4,第三邊的長是方程 -12x+35=0的根,則該三角形的周長為( 。
A.14
B.12
C.12或14
D.以上都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D為BC上一點,∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,試求∠DAC、∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直線AB上一點O為端點作射線OC,使∠BOC=70°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖①,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖②,將直角三角板DOE繞點O逆時針方向轉動到某個位置,若OC恰好平分∠BOE,求∠COD的度數(shù);
(3)如圖③,將直角三角板DOE繞點O轉動,如果OD始終在∠BOC的內部,試猜想∠BOD和∠COE有怎樣的數(shù)量關系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.一個游戲的中獎概率是 ,則做10次這樣的游戲一定會中獎
B.一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8
C.為了解全國中學生的心理健康情況,應該采用普查的方式
D.若甲組數(shù)據(jù)的方差S2甲=0.01,乙組數(shù)據(jù)的方差S2乙=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題。
(1)計算:﹣22+| ﹣4|+( )﹣1+2tan60°.
(2)先化簡,再求值:( ﹣ )÷ ,其中x是不等式3x+7>1的負整數(shù)解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于點C(0,5).
(1)求該拋物線所對應的函數(shù)關系式;
(2)D是笫一象限內拋物線上的一個動點(與點C、B不重合),過點D作DF⊥x軸于點F,交直線BC于點E,連結BD、CD.設點D的橫坐標為m,△BCD的面積為S.
①求S關于m的函數(shù)關系式及自變量m的取值范圍;
②當m為何值時,S有最大值,并求這個最大值;
③直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請求出點D的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上有A、B、C三個點,它們表示的數(shù)分別是、、。
(1)填空:AB= ,BC= ;
(2)現(xiàn)有動點M、N都從A點出發(fā),點M以每秒2個單位長度的速度向右移動,當點M移動到B點時,點N才從A點出發(fā),并以每秒3個單位長度的速度向右移動,求點N移動多少時間,點N追上點M?
(3)若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒3個單位長度和7個單位長度的速度向右運動。試探索:BC-AB的值是否隨著時間的變化而改變?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com