【題目】(1)如圖,,,平分,平分,求的度數.
(2)如果(1)中,其他條件不變,求的度數.
(3)如果(1)中其他條件不變,則的度數為 .(直接寫出結果)
(4)從(1)、(2)、(3)的結果能看出的規(guī)律是:與有什么關系,與哪個角的大小無關?
【答案】(1)45°;(2);(3);(4),與的大小無關.
【解析】
(1)先求出∠AOC的度數,再根據角平分線的定義依次求出∠COM和∠CON的度數即可求得結果;
(2)仿(1)的思路,先求出∠AOC的度數,再根據角平分線的定義依次求出∠COM和∠CON的度數即可求得結果;
(3)仿(1)的思路,先求出∠AOC的度數,再根據角平分線的定義依次求出∠COM和∠CON的度數即可求得結果;
(4)仿(1)的思路,根據角平分線的定義依次表示出∠COM和∠CON即可得出結論.
解:(1),,,
平分,,
平分,,
;
(2) ,,,
平分,,
平分,,
∴;
(3),,,
平分,,
平分,,
.
故答案為:;
(4)從(1)、(2)、(3)的結果能看出的規(guī)律是:,與的大小無關.
由前面的推理可得:,與的大小無關.
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD的兩條邊在坐標軸上,點D與坐標原點O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運動,同時點P從A點出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經過點B向點C運動,當點P到達點C時,矩形ABCD和點P同時停止運動,設點P的運動時間為t秒.
(1)當t=5時,請直接寫出點D、點P的坐標;
(2)當點P在線段AB或線段BC上運動時,求出△PBD的面積S關于t的函數關系式,并寫出相應t的取值范圍;
(3)點P在線段AB或線段BC上運動時,作PE⊥x軸,垂足為點E,當△PEO與△BCD相似時,求出相應的t值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=,cos37°=,tan37°=)
求把手端點A到BD的距離;
求CH的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,弧AB=弧AC,AP是⊙O的切線,交BO的延長線于點P
(1) 求證:AP∥BC
(2) 若tan∠P=,求tan∠PAC的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中,正確的個數是( )
①兩點之間,直線最短.
②三條直線兩兩相交,最少有三個交點.
③射線和射線是同一條射線.
④同角(或等角)的補角相等.
⑤在同一平面內,垂直于同一條直線的兩條直線互相平行.
⑥絕對值等于它本身的數是非負數.
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=24厘米,BC=10厘米,點P從A開始沿AB邊以4厘米/秒的速度運動,點Q從C開始沿CD邊2厘米/秒的速度移動,如果點P、Q分別從A、C同時出發(fā),當其中一點到達終點時,另一點也隨之停止運動,設運動時間為t秒.
(1)當t=2秒時,求P、Q兩點之間的距離;
(2)t為何值時,線段AQ與DP互相平分?
(3)t為何值時,四邊形APQD的面積為矩形面積的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,已知∠AOC=75°,∠BOE :∠DOE=2:3.
(1)求∠BOE的度數;
(2)若OF平分∠AOE,∠AOC與∠AOF相等嗎?為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在一張長方形紙條上畫一條數軸.
(1)若折疊紙條使數軸上表示﹣1的點與表示5的點重合,則折痕與數軸的交點表示的數是 ;
(2)如果數軸上兩點之間的距離為6+m2(m為常數),這兩點經過(1)的折疊方式后折痕與數軸的交點與(1)中的交點相同,求左邊這個點表示的數;(用含m的代數式表示)
(3)如圖2,若將此紙條沿A,B處剪開,將中間的一段紙條對折,使其左右兩端重合,這樣連續(xù)對折n次后,再將其展開,求最右端的折痕與數軸的交點表示的數.(用含n的代數式表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現在正是草莓熱銷的季節(jié),某水果零售商店分兩批次從批發(fā)市場共購進草莓40箱,已知第一、二次進貨價分別為每箱50元、40元,且第二次比第一次多付款700元.
(1)設第一、二次購進草莓的箱數分別為a箱、b箱,求a,b的值;
(2)若商店對這40箱草莓先按每箱60元銷售了x箱,其余的按每箱35元全部售完.
①求商店銷售完全部草莓所獲利潤y(元)與x(箱)之間的函數關系式;
②當x的值至少為多少時,商店才不會虧本.(注:按整箱出售,利潤=銷售總收入-進貨總成本)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com