問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形BC邊上的高.
杰杰同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處).借用網(wǎng)格等知識就能計算出這個三角形BC邊上的高.
(1)請在正方形網(wǎng)格中畫出格點△ABC;
(2)求出這個三角形BC邊上的高.
分析:(1)根據(jù)勾股定理即可作出長是
5
,
10
13
的線段,即可作出三角形;
(2)利用圖形的和差關系求得△ABC的面積,然后利用三角形的面積公式求解.
解答:解:(1)如圖所示:


(2)四邊形DECF的面積是:3×3=9,
△ABD的面積是:
1
2
×1×2=1,
△AFC的面積是:
1
2
×2×3=3,
△BEC的面積是:
1
2
×1×3=
3
2
,
則△ABC的面積是:9-1-3-
3
2
=
7
2

設BC邊上的高是h,則
1
2
10
h=
7
2

解得:h=
10
7
點評:本題考查了勾股定理以及三角形的面積公式,求得△ABC的面積是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積.
小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上
 
;
思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC三邊的長分別為
5
a
、2
2
a
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積;
探索創(chuàng)新:
(3)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
、2
m2+n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
13
,求這個三角形的面積小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂精英家教網(wǎng)點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
 

(2)畫△DEF,DE、EF、DF三邊的長分別為
2
、
8
、
10

①判斷三角形的形狀,說明理由.
②求這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求此三角形的面積.小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上:
3.5
3.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構圖法.如果△ABC三邊的長分別
5
a、
8
a、
17
a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:“在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積.”
小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)絡中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),
(1)如圖所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積是
3.5
3.5

(2)如圖我們把上述求面積的方法叫做構圖法.若△DCE三邊的長分別為
m2+16n2
、
9m2+4n2
、
4m2+4n2
(m>0,n>0,且m≠n),試運用構圖法求出這三角形的面積.

查看答案和解析>>

同步練習冊答案