如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC、AD于點(diǎn)E、F.
(1)在旋轉(zhuǎn)過程中,線段AF與EC有怎樣的數(shù)量關(guān)系?并說明理由.
(2)若AB⊥AC,AB=1,BC=時(shí),在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?不能,說明理由;能,也說明理由,并求出此時(shí)AC繞O順時(shí)針旋轉(zhuǎn)的度數(shù).

【答案】分析:(1)已知該圖形為平行四邊形,故易證得△AOF≌△COE,后可得出AF=EC.
(2)根據(jù)(1)可知△AOF≌△COE,然后可得出OE=OF.根據(jù)題意可得出四邊形BEDF是菱形.根據(jù)勾股定理可求出AC的值,之后可得出△AOB是等腰直角三角形,然后可知道AC繞O順時(shí)針旋轉(zhuǎn)的度數(shù)為45°,從而得出結(jié)論.
解答:解:(1)AF=EC;(2分)
理由:∵四邊形ABCD是平行四邊形,
∴OA=OC,∠ECO=∠FAO;
又∵∠AOF=∠EOC,
∴△AOF≌△EOC,故AF=EC.(4分)

(2)四邊形BEDF可能是菱形.(5分)
理由:∵△AOF≌△COE,
∴OF=OE,
又∵OB=OD,
∴四邊形BEDF是平行四邊形,(6分)
∴只要有EF⊥BD,就能使平行四邊形BEDF是菱形.
∵AB⊥AC,AB=1,BC=,
∴AC==2,
又∵OA=OC,
∴AO=1,
∵AB⊥AC,AB=1,
∴△AOB是等腰直角三角形,
∴∠AOB=45°,
∴AC繞O順時(shí)針旋轉(zhuǎn)的度數(shù)為45°.
點(diǎn)評(píng):本題的難度中上,主要考查的是圖形的旋轉(zhuǎn)變換以及全等三角形的相關(guān)知識(shí),綜合性強(qiáng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標(biāo)系中,AD=6,若OA、OB的長是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個(gè)根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點(diǎn),且S△AOE=
16
3
,求經(jīng)過D、E兩點(diǎn)的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點(diǎn),AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對(duì)角線AC、BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定角度后,分別交BC、AD于點(diǎn)E、F.
精英家教網(wǎng)
(1)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(2)當(dāng)旋轉(zhuǎn)角為90°時(shí),在圖2中畫出直線AC旋轉(zhuǎn)后的位置并證明此時(shí)四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說明理由;如果能,說明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).(圖供畫圖或解釋時(shí)使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD的兩條對(duì)角線AC、BD相交于點(diǎn)O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習(xí)冊答案