如圖,D,E分別是△ABC的邊AB和AC的中點,已知∠A=60°,∠B=50°,則∠AED=    °.
【答案】分析:根據(jù)三角形內角和定理求出∠ACB,再利用三角形中位線定理求證DE∥BC,利用同位角相等即可求出∠AED.
解答:解:∵∠A=60°,∠B=50°,
∴∠ACB=180°-∠A-∠B=180°-60°-50°=70°,
∵D,E分別是△ABC的邊AB和AC的中點,
∴DE∥BC,
∴∠AED=∠ACB=70°.
故答案為:70.
點評:此題主要考查學生對三角形中位線定理和平行線的性質的理解和掌握,解答此題的關鍵是利用三角形內角和定理求出∠ACB,此題難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、如圖,E、F分別是等腰△ABC的腰AB、AC的中點.用尺規(guī)在BC邊上求作一點M,使四邊形AEMF為菱形.
(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖:AB、AC分別是⊙O的直徑和弦,D為弧AC上一點,DE⊥AB于點H,交⊙O于點E,交AC于點F.P為ED延長線上一點,連PC.
(1)若PC與⊙O相切,判斷△PCF的形狀,并證明.
(2)若D為弧AC的中點,且
BC
AB
=
3
5
,DH=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB和AC分別是⊙O的直徑和弦,OD⊥AC于D點,若OA=4,∠A=30°,則BD等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,E、F分別是正方形ABCD邊BC、AD上的點,且BE=DF
求證:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

桌上放著一個圓柱和一個長方體,如圖(1),請說出下列三幅圖(如圖(2))分別是從哪個方向看到的.

查看答案和解析>>

同步練習冊答案