精英家教網 > 初中數學 > 題目詳情
如圖,A、B是雙曲線上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=6.則k的值為( )

A.1
B.2
C.4
D.無法確定
【答案】分析:分別過點A、B作x軸的垂線,垂足分別為D、E,那么由AD∥BE,AD=2BE,可知B、E分別是AC、DC的中點,得出OC=3a,
進而求出S△AOC=AD×CO=(a+2a)×==6,即可求出k的值.
解答:解:分別過點A、B作x軸的垂線,垂足分別為D、E.
則AD∥BE,AD=2BE=
∴B、E分別是AC、DC的中點.
∴△ADC∽△BEC,
∵BE:AD=1:2,
∴EC:CD=1:2,
∴EC=DE=a,
∴OC=3a,
又∵A(a,),B(2a,),
∴S△AOC=AD×CO=×3a×==6,
解得:k=4.
故選C.
點評:本題主要考查了反比例函數的性質、三角形的中位線的判定及梯形的面積公式,體現了數形結合的思想,同學們要好好掌握.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,A、B是雙曲線y=
k
x
(k>0)
上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=6.則k的值為( 。
A、1B、2C、4D、無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,C,D是雙曲線y=
m
x
在第1象限內的分支上的兩點,直線CD分別交x軸、y軸于A、B兩點,設C、D坐標(x1,y1),(x2,y2),連接OC、OD,求證:y1<OC<y1+
m
y1

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,A、B是雙曲線 y=
k
x
(k>0)上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=9.則k的值為( 。
A、2B、3C、6D、9

查看答案和解析>>

科目:初中數學 來源: 題型:

(2011•沙縣質檢)如圖,A、B兩點是雙曲線的一個分支上的兩點,點B在點A右側,并且B的坐標為(a,b),則a的取值范圍是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖1,已知C、D是雙曲線y=
m
x
在第一象限內的分支上兩點,直線CD分別交x軸、y軸于A、B,CG⊥x軸于G,DH⊥x軸于H,
OG
GC
=
DH
OH
=
1
4
,OC=
17

(1)求m的值和D點的坐標;
(2)在雙曲線第一象限內的分支上是否有一點P,使得S△POC=S△POD?若存在,求出P點坐標;若不存在,請說明理由.
(3)如圖2,點K是雙曲線y=
m
x
在第三象限內的分支上的一動點,過點K作KM⊥y軸于M,OE平分∠KOA,KE⊥OE,KE交y軸于N,直線ME交x軸于F,①
OF2+MN2
ON2
,②
OF+MN
ON
,有一個為定值,請你選擇正確結論并求出這個定值.

查看答案和解析>>

同步練習冊答案