【題目】將含有30°角的直角三角板OAB如圖放置在平面直角坐標系中,OB在x軸上,若OA=2,將三角板繞原點O順時針旋轉(zhuǎn)75°,則點A的對應點A′的坐標為( )
A.( ,﹣1)
B.(1,﹣ )
C.( ,﹣ )
D.(﹣ , )
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A. ∠M=∠N B. AM=CN C. AB=CD D. AM∥CN
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點C,則點C的坐標為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù) ( )與反比例函數(shù) ( )的圖象交于點 , .
(1)求這兩個函數(shù)的表達式;
(2)在 軸上是否存在點 ,使 為等腰三角形?若存在,求 的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,點D為射線CB上一個動點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過點E作EF∥BC,交直線AC于點F,連接CE.
(1)如圖①,若∠BAC=60°,按邊分類:△CEF是 ____________ 三角形;
(2)若∠BAC<60°.
①如圖②,當點D在線段CB上移動時,判斷△CEF的形狀并證明;
②當點D在線段CB的延長線上移動時,△CEF是什么三角形?請在圖③中畫出相應的圖形,寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,銳角△ABC中,D、E分別是AB、AC邊上的點,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE、CD交于點F.若∠BAC=35°,則∠BFC的大小是( )
A. 105° B. 110° C. 100° D. 120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中有點B(﹣1,0)和y軸上一動點A(0,a),其中a>0,以A點為直角頂點在第二象限內(nèi)作等腰直角△ABC,設點C的坐標為(c,d).
(1)當a=2時,則C點的坐標為( , );
(2)動點A在運動的過程中,試判斷c+d的值是否發(fā)生變化?若不變,請求出其值;若發(fā)生變化,請說明理由.
(3)當a=2時,在坐標平面內(nèi)是否存在一點P(不與點C重合),使△PAB與△ABC全等?若存在,直接寫出P點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】乘法公式的探究及應用.
(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);
(3)比較圖1、圖2陰影部分的面積,可以得到公式 ;
(4)運用你所得到的公式,計算下列各題:
①10.2×9.8,②(2m+n﹣p)(2m﹣n+p).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機,某商店決定購進A、B兩種藝術(shù)節(jié)紀念品.若購進A種紀念品8件,B種紀念品3件,需要950元;若購進A種紀念品5件,B種紀念品6件,需要800元.
(1)求購進A、B兩種紀念品每件各需多少元?
(2)若該商店決定購進這兩種紀念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進貨方案?
(3)若銷售每件A種紀念品可獲利潤20元,每件B種紀念品可獲利潤30元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com